English

Verify Lagrange'S Mean Value Theorem for the Following Function on the Indicated Intervals. Find a Point 'C' in the Indicated Interval as Stated by the Lagrange'S Mean Valu F(X) = X2 − 1 on [2, 3] ? - Mathematics

Advertisements
Advertisements

Question

Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?

Sum

Solution

 We have

\[f\left( x \right) = x^2 - 1\]

Since a polynomial function is everywhere continuous and differentiable, \[f\left( x \right)\] is continuous on \[\left[ 2, 3 \right]\] and differentiable on \[\left( 2, 3 \right)\]. 

Thus, both conditions of Lagrange's mean value theorem are satisfied.
So, there must exist at least one real number ​ \[c \in \left( 2, 3 \right)\] such that \[f'\left( c \right) = \frac{f\left( 3 \right) - f\left( 2 \right)}{3 - 2}\]

Now, 

\[f\left( x \right) = x^2 - 1\]
\[\Rightarrow f'\left( x \right) = 2x\] ,
\[f\left( 3 \right) = \left( 3 \right)^2 - 1 = 8\] ,
\[f\left( 2 \right) = \left( 2 \right)^2 - 1 = 3\]
\[f'\left( x \right) = \frac{f\left( 3 \right) - f\left( 2 \right)}{3 - 2}\]

\[\Rightarrow 2x = \frac{8 - 3}{1}\]

\[ \Rightarrow x = \frac{5}{2}\]

Thus, \[c = \frac{5}{2} \in \left( 2, 3 \right)\] such that \[f'\left( c \right) = \frac{f\left( 3 \right) - f\left( 2 \right)}{3 - 2}\].

Hence, Lagrange's theorem is verified.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.2 | Q 1.01 | Page 17

RELATED QUESTIONS

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ecos x on [−π/2, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = cos 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


Using Rolle's theorem, find points on the curve y = 16 − x2x ∈ [−1, 1], where tangent is parallel to x-axis.


At what point  on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = sin x − sin 2x − x on [0, π] ?


Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above  LPP and solve it graphically and find the maximum profit.


Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×