Advertisements
Advertisements
Question
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.
Solution
Let VAB be a cone.
Height of the cone = h
Semivertex angle = α
Cylinder A'B'DC is inscribed in a cone whose radius = x.
OO' = Height of cylinder = VO - VO'
= h - x cot α
V, volume of the cylinder = πx2 (h - x cot α)
On differentiating with respect to x,
`(dV)/dx = 2 pi xh - 3 pix^2 cot alpha`
For maximum and minimum, `(dV)/dx = 0`
⇒ 2πxh - 3πx2 cot α = 0
⇒ πx (2h - 3x cot α) = 0
⇒ 2h - 3 x cot α = 0
⇒ 3x cot α = 2h
`therefore x = (2h)/3 tan alpha ...[x ne 0]`
Now, `(d^2 v)/(dx^2) = 2 pih - 6 pih cot alpha`
When x = `(2h)/3 tan alpha`
`therefore (d^2V)/dx^2 = 2pih - 6pi (2h)/3 tan alpha cot alpha`
`= 2pih - 4pih`
`= pi(2h - 4h)`
`= - 2 pih < 0`
⇒ V is maximum when x = `(2h)/3 tan alpha`
Height of cylinder, OO' = VO - VO' = h - x cot α
`= h - ((2h)/3 tan alpha) cot alpha ...[because x = (2h)/3 tan alpha]`
`= h - (2h)/3 = h/3`
`= 1/3` height of the cone
Maximum volume of cylinder = πx2 (h - x cot α)
`= pi - ((2h)/3 tan alpha)^2 * (h - (2h)/3)`
`= pi((2h)/3 tan alpha)^2 xx h/3`
`= 4/27 pih^3 tan^2 alpha`
APPEARS IN
RELATED QUESTIONS
Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.
A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.
f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?
Using Rolle's theorem, find points on the curve y = 16 − x2, x ∈ [−1, 1], where tangent is parallel to x-axis.
At what point on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?
It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?
Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = sin x − sin 2x − x on [0, π] ?
Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?
Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?
If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ?
For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is
Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (e, e), the value of x is
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?
Show that the local maximum value of `x + 1/x` is less than local minimum value.
Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1
The values of a for which y = x2 + ax + 25 touches the axis of x are ______.
The maximum value of sinx + cosx is ______.
At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.
Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`
The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.
The minimum value of `1/x log x` in the interval `[2, oo]` is