Advertisements
Advertisements
Question
Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?
Solution
By Rolle’s theorem, for a function f : [a , b] →R , if
(a) f is continuous on [a, b],
(b) f is differentiable on (a, b) and
(c) f (a) = f (b),
then there exists some c ∈ (a, b) such that f'(c) = 0 .
Therefore, Rolle’s theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis
(i) f(x) = [x] for x ∈ [ 5 , 9 ]
It is evident that the given function f (x) is not continuous at every integral point.
In particular, f(x) is not continuous at x = 5 and x = 9.
Thus, f (x) is not continuous on [5, 9].
Also , f (5) = [5] = 5 and f (9) = [9] = 9
∴ f (5) ≠ f (9)
The differentiability of f on (5, 9) is checked in the following way.
Let n be an integer such that n ∈ (5, 9).
The left hand limit of f at x = n is,
`lim_(h ->o)(f (n + h) - f (n)\)/h = lim_(h->o) ([n + h ] - [n])/h) = lim_(h->o)(n- 1- n)/h = lim_(h ->o)(-1)/h =oo`
The right hand limit of f at x = n is,
`lim_(h->o) (f (n +h )- f (n))/h = lim _(h->o)([n +h] - [n])/h = lim_(h->o)(n-n)/h = lim _(h->o) 0 = 0 `
Since the left and the right hand limits of f at x = n are not equal, f is not differentiable at x = n.
Thus, f is not differentiable on (5, 9).
It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s theorem.
Hence, Rolle’s theorem is not applicable on f (x) for x ∈ [5 , 9] .
(ii) f (x) = [x] for x ∈ [-2 , 2]
It is evident that the given function f (x) is not continuous at every integral point.
In particular, f(x) is not continuous at x = −2 and x = 2.
Thus, f (x) is not continuous on [−2, 2].
Also, f (-2) = [-2] = -2 and f (2) = [2] = 2
∴ f (-2) ≠ f (2)
The differentiability of f on (−2, 2) is checked in the following way.
Let n be an integer such that n ∈ (−2, 2).
The left hand limit of f at x = n is .
`lim_(h->o) (f (n + h) -f (n))/ h = lim_(h->o) ([n +h]- [n])/h = lim_(h->o)(n - 1- n)/h = lim_(h->o) (-1)/ h =oo`
The right hand limit of f at x = n is ,
`lim_(h->o) (f(n+h) -f (n))/h = lim_(h->o)([n+h] - [n])/h) lim_(h->o)(n-n)/h = lim_(h->o)(-1)/h = oo`
Since the left and the right hand limits of f at x = n are not equal, f is not differentiable at x = n.
Thus, f is not differentiable on (−2, 2).
It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s theorem.
Hence, Rolle’s theorem is not applicable on f(x)= [x] for x ∈ [ -2 , 2 ].
APPEARS IN
RELATED QUESTIONS
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 1)2 on [0, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x2 − 1) (x − 2) on [−1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x(x −2)2 on the interval [0, 2] ?
Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = ex cos x on [−π/2, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?
Using Rolle's theorem, find points on the curve y = 16 − x2, x ∈ [−1, 1], where tangent is parallel to x-axis.
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 2x2 − x + 3 on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 + x − 1 on [0, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = sin x − sin 2x − x on [0, π] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?
Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?
Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?
Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?
Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).
Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?
If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?
If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]
The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is
A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum?
Show that the local maximum value of `x + 1/x` is less than local minimum value.
Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π
At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.
At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.
The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.
If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.
If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is