English

Find a Point on the Parabola Y = (X − 4)2, Where the Tangent is Parallel to the Chord Joining (4, 0) and (5, 1) ? - Mathematics

Advertisements
Advertisements

Question

Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?

Sum

Solution

​Let: 

\[f\left( x \right) = \left( x - 4 \right)^2 = x^2 - 8x + 16\] 

The tangent to the curve is parallel to the chord joining the points \[\left( 4, 0 \right)\] and \[\left( 5, 1 \right)\] .

Assume that the chord joins the points 

\[\left( a, f\left( a \right) \right)\] and \[\left( b, f\left( b \right) \right)\] .
\[\therefore\] \[a = 4, b = 5\]
The polynomial function is everywhere continuous and differentiable.
So, \[x^2 - 8x + 16\] is continuous on \[\left[ 4, 5 \right]\] and differentiable on \[\left( 4, 5 \right)\] .
Thus, both the conditions of Lagrange's theorem are satisfied.
Consequently, there exists \[c \in \left( 4, 5 \right)\] such that 
\[f'\left( c \right) = \frac{f\left( 5 \right) - f\left( 4 \right)}{5 - 4}\] .
Now, 
\[f\left( x \right) = x^2 - 8x + 16 \Rightarrow\] \[f'\left( x \right) = 2x - 8\],\[f\left( 5 \right) = 1, f\left( 4 \right) = 0\]
\[\therefore\]  \[f'\left( x \right) = \frac{f\left( 5 \right) - f\left( 4 \right)}{5 - 4}\]\[\Rightarrow\] \[2x - 8 = \frac{1}{1} \Rightarrow 2x = 9 \Rightarrow x = \frac{9}{2}\]
Thus, \[c = \frac{9}{2} \in \left( 4, 5 \right)\] such that ​\[f'\left( c \right) = \frac{f\left( 5 \right) -f\left( 4 \right)}{5 - 4}\] .
Clearly,
\[f\left( c \right) = \left( \frac{9}{2} - 4 \right)^2 = \frac{1}{4}\]
Thus, \[\left( c, f\left( c \right) \right)\] i.e.​  \[\left( \frac{9}{2}, \frac{1}{4} \right)\],  is a point on the given curve where the tangent is parallel to the chord joining the points (4, 0) and (5, 1).
shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.2 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.2 | Q 5 | Page 18

RELATED QUESTIONS

Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?


Using Rolle's theorem, find points on the curve y = 16 − x2x ∈ [−1, 1], where tangent is parallel to x-axis.


At what point  on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore  f(x) = tan1 x on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = sin x − sin 2x − x on [0, π] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?


If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].

 


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


The maximum value of sinx + cosx is ______.


The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:


Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :- 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×