Advertisements
Advertisements
Question
Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?
Solution
Let:
\[f\left( x \right) = \left( x - 4 \right)^2 = x^2 - 8x + 16\]
The tangent to the curve is parallel to the chord joining the points \[\left( 4, 0 \right)\] and \[\left( 5, 1 \right)\] .
Assume that the chord joins the points
So, \[x^2 - 8x + 16\] is continuous on \[\left[ 4, 5 \right]\] and differentiable on \[\left( 4, 5 \right)\] .
Consequently, there exists \[c \in \left( 4, 5 \right)\] such that
APPEARS IN
RELATED QUESTIONS
Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)
A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.
f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x2 − 1) (x − 2) on [−1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 2x on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?
Using Rolle's theorem, find points on the curve y = 16 − x2, x ∈ [−1, 1], where tangent is parallel to x-axis.
At what point on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?
At what point on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?
It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 2x + 4 on [1, 5] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = tan−1 x on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = sin x − sin 2x − x on [0, π] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?
Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?
Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?
If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?
If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?
Show that the local maximum value of `x + 1/x` is less than local minimum value.
Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`
If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.
Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.
The maximum value of sinx + cosx is ______.
The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:
Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :-