Advertisements
Advertisements
Question
Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?
Solution
The given function is \[f\left( x \right) = \frac{\sin x}{e^x}\] .
Since \[\cos x \text { and } e^x\] are everywhere continuous and differentiable, being the quotient of these two, \[f\left( x \right)\] is continuous on \[\left[ 0, \pi \right]\] and differentiable on \[\left( 0, \pi \right)\] .
\[f\left( x \right) = \frac{\sin x}{e^x}\]
\[ \Rightarrow f'\left( x \right) = \frac{\cos x - \sin x}{e^x}\]
\[\therefore f'\left( x \right) = 0\]
\[ \Rightarrow \frac{\cos x - \sin x}{e^x} = 0\]
\[ \Rightarrow \cos x - \sin x = 0\]
\[ \Rightarrow \tan x = 1\]
\[ \Rightarrow x = \frac{\pi}{4}\]
Thus,\[c = \frac{\pi}{4} \in \left( 0, \pi \right)\] such that\[f'\left( c \right) = 0\] .
Hence, Rolle's theorem is verified.
APPEARS IN
RELATED QUESTIONS
Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.
A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.
f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 4)2 on the interval [0, 4] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?
Using Rolle's theorem, find points on the curve y = 16 − x2, x ∈ [−1, 1], where tangent is parallel to x-axis.
At what point on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?
At what point on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 2x2 − x + 3 on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 + x − 1 on [0, 4] ?
Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?
If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ?
State Rolle's theorem ?
If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]
Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
If f (x) = ex sin x in [0, π], then c in Rolle's theorem is
A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum?
Show that the local maximum value of `x + 1/x` is less than local minimum value.
Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1
Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`
The values of a for which y = x2 + ax + 25 touches the axis of x are ______.
Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.
Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`
At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.
It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.
If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is