English

Verify Lagrange'S Mean Value Theorem for the Following Function on the Indicated Intervals. Find a Point 'C' in the Indicated Interval as Stated by the Lagrange'S Mean F(X) = X2 + X − 1 on [0, 4] ? - Mathematics

Advertisements
Advertisements

Question

Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 + x − 1 on [0, 4] ?

Sum

Solution

We have,

\[f\left( x \right) = x^2 + x - 1\]

Since polynomial function is everywhere continuous and differentiable.
Therefore, \[f\left( x \right)\] is continuous on \[\left[ 0, 4 \right]\] and differentiable on \[\left( 0, 4 \right)\]

Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some \[c \in \left( 0, 4 \right)\] such that
\[f'\left( c \right) = \frac{f\left( 4 \right) - f\left( 0 \right)}{4 - 0} = \frac{f\left( 4 \right) - f\left( 0 \right)}{4}\]
Now, \[f\left( x \right) = x^2 + x - 1\]
\[f'\left( x \right) = 2x + 1\],\[f\left( 4 \right) = 19\],\[f\left( 0 \right) = - 1\]
∴ \[f'\left( x \right) = \frac{f\left( 4 \right) - f\left( 0 \right)}{4 - 0}\]

\[\Rightarrow 2x + 1 = \frac{20}{4}\]

\[ \Rightarrow 2x + 1 = 5\]

\[ \Rightarrow 2x = 4 \]

\[ \Rightarrow x = 2\]

Thus, \[c = 2 \in \left( 0, 4 \right)\] such that \[f'\left( c \right) = \frac{f\left( 4 \right) - f\left( 0 \right)}{4 - 0}\].

Hence, Lagrange's theorem is verified.
shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.2 | Q 1.14 | Page 17

RELATED QUESTIONS

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?


At what point  on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 3x + 2 on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


Find the value of c prescribed by Lagrange's mean value theorem for the function \[f\left( x \right) = \sqrt{x^2 - 4}\] defined on [2, 3] ?


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (ee), the value of x is


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above  LPP and solve it graphically and find the maximum profit.


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


The values of a for which y = x2 + ax + 25 touches the axis of x are ______.


Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`


At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.


The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


The minimum value of `1/x log x` in the interval `[2, oo]` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×