English

If 4a + 2b + C = 0, Then the Equation 3ax2 + 2bx + C = 0 Has at Least One Real Root Lying in the Interval (A) (0, 1) (B) (1, 2) (C) (0, 2) (D) None of These - Mathematics

Advertisements
Advertisements

Question

If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval

Options

  • (0, 1)

  • (1, 2)

  • (0, 2)

  • none of these

MCQ

Solution

 (0, 2)

\[Let\]

\[f\left( x \right) = a x^3 + b x^2 + cx + d . . . . . \left( 1 \right)\]

\[f\left( 0 \right) = d\]

\[f\left( 2 \right) = 8a + 4b + 2c + d\]

\[ = 2\left( 4a + 2b + c \right) + d\]

\[ = d \left( \because \left( 4a + 2b + c \right) = 0 \right)\]

f is continuous in the closed interval [0, 2] and is derivable in the open interval (0, 2).
Also, f(0) = f(2)
By Rolle's Theorem,

\[f'\left( \alpha \right) = 0        \text{ for }  0 < \alpha < 2\] 
 
\[\text { Now },   f'\left( x \right) = 3a x^2  + 2bx + c\] 
 
\[ \Rightarrow f'\left( \alpha \right) = 3a \alpha^2  + 2b\alpha + c = 0\] 
 
\[\text { Equation }  \left( 1 \right)  \text{has  atleast  one  root  in  the  interval } \left( 0, 2 \right) . \] 
\[\text { Thus,}   f'\left( x \right)  \text{must  have  root  in  the  interval }  \left( 0, 2 \right) .\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.4 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.4 | Q 2 | Page 19

RELATED QUESTIONS

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ecos x on [−π/2, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


At what point  on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?


At what point  on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?


State Rolle's theorem ?


Find the value of c prescribed by Lagrange's mean value theorem for the function \[f\left( x \right) = \sqrt{x^2 - 4}\] defined on [2, 3] ?


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is 

 


A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above  LPP and solve it graphically and find the maximum profit.


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1


The values of a for which y = x2 + ax + 25 touches the axis of x are ______.


At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.


If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.


Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :- 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×