English

Verify Rolle'S Theorem for the Following Function on the Indicated Interval F(X) = Ex Sin X on [0, π] ? - Mathematics

Advertisements
Advertisements

Question

Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?

Sum

Solution

The given function is \[f\left( x \right) = e^x \sin x\] .

Since\[\text { sin } x \text { and } e^{x} \] are everywhere continuous and differentiable.

Therefore, being a product of these two, \[f\left( x \right)\]is continuous on \[\left[ 0, \pi \right]\] and differentiable on \[\left( 0, \pi \right)\] .

Also,

\[f\left( \pi \right) = f\left( 0 \right) = 0\]

Thus, 

\[f\left( x \right)\] satisfies all the conditions of Rolle's theorem.

Now, we have to show that there exists\[c \in \left( 0, \pi \right)\] such that \[f'\left( c \right) = 0\] .

We have

\[f\left( x \right) = e^x \sin x\]
\[ \Rightarrow f'\left( x \right) = e^x \left( \sin x + \cos x \right)\]

\[\therefore f'\left( x \right) = 0\]
\[ \Rightarrow e^x \left( \sin x + \cos x \right) = 0\]
\[ \Rightarrow \sin x + \cos x = 0\]
\[ \Rightarrow \tan x = - 1\]
\[ \Rightarrow x = \pi - \frac{\pi}{4} = \frac{3\pi}{4}\]

Since

\[c = \frac{3\pi}{4} \in \left( 0, \pi \right)\] such that 
\[f'\left( c \right) = 0\] .
​Hence, Rolle's theorem is verified.
shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.1 | Q 3.04 | Page 9

RELATED QUESTIONS

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


Using Rolle's theorem, find points on the curve y = 16 − x2x ∈ [−1, 1], where tangent is parallel to x-axis.


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 + x − 1 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]

 


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


The values of a for which y = x2 + ax + 25 touches the axis of x are ______.


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.


The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×