English

Verify Rolle'S Theorem for the Following Function on the Indicated Interval F(X) = X2 − 5x + 4 on [1, 4] ? - Mathematics

Advertisements
Advertisements

Question

Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?

Sum

Solution

According to Rolle’s theorem, if f(x) is a real valued function defined on [a, b] such that it is continuous on [a, b], it is differentiable on (a, b) and f(a) = f(b), then there exists a real number c ∈(a, b) such that f(c) = 0.

Now, f(x) is defined for all x ∈[1, 4].
At each point of [1, 4], the limit of f(x) is equal to the value of the function. Therefore, f(x) is continuous on [1, 4].

Also,f' (x) = 2x - 5 exists for all x ∈ (1, 4).

So, f(x) is differentiable on (1, 4).

Also,
 f(1) = f(4) = 0

Thus, all the three conditions of Rolle’s theorem are satisfied.

Now, we have to show that there exists c ∈(1, 4) such that f'(c) = 0.

We have

f' (x) = 2x - 5

\[\therefore f'\left( x \right) = 0\] 
\[ \Rightarrow 2x - 5 = 0\] 
\[ \Rightarrow x = \frac{5}{2}\]
[Since `c = 5/2` ∈ (1, 4) such that f' (c) = 0 ]
Hence, Rolle’s theorem is verified.
shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.1 | Q 3.16 | Page 9

RELATED QUESTIONS

f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x3 − 2x2 − x + 3 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore  f(x) = tan1 x on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?


Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?


If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]

 


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above  LPP and solve it graphically and find the maximum profit.


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


The values of a for which y = x2 + ax + 25 touches the axis of x are ______.


The maximum value of sinx + cosx is ______.


At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.


The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.


If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.


The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×