English

The Value of C in Lagrange'S Mean Value Theorem for the Function F (X) = X (X − 2) When X ∈ [1, 2] is (A) 1 (B) 1/2 (C) 2/3 (D) 3/2 - Mathematics

Advertisements
Advertisements

Question

The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is

Options

  • 1

  • 1/2

  • 2/3

  • 3/2

MCQ

Solution

\[\frac{3}{2}\]

We have
 f (x) = x (x − 2)

It can be rewritten as \[f\left( x \right) = x^2 - 2x\] .

We know that a polynomial function is everywhere continuous and differentiable.
Since \[f\left( x \right)\] is a polynomial , it is continuous on \[\left[ 1, 2 \right]\] and differentiable on \[\left( 1, 2 \right)\] .

Thus, \[f\left( x \right)\] satisfies both the conditions of Lagrange's theorem on \[\left[ 1, 2 \right]\] .
So, there must exist at least one real number c \[\left[ 1, 2 \right]\] such that 
\[f'\left( c \right) = \frac{f\left( 2 \right) - f\left( 1 \right)}{2 - 1} = \frac{f\left( 2 \right) - f\left( 1 \right)}{1}\]
Now, \[f\left( x \right) = x^2 - 2x\] 
\[\Rightarrow f'\left( x \right) = 2x - 2\], and\[f\left( 1 \right) = - 1, f\left( 2 \right) = 0\]
\[\therefore f'\left( x \right) = \frac{f\left( 2 \right) - f\left( 1 \right)}{2 - 1}\]

\[\Rightarrow f'\left( x \right) = \frac{0 + 1}{1}\]

\[ \Rightarrow 2x - 2 = 1\]

\[ \Rightarrow x = \frac{3}{2}\]

∴ \[c = \frac{3}{2} \in \left( 1, 2 \right)\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.4 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.4 | Q 9 | Page 20

RELATED QUESTIONS

A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?


Using Rolle's theorem, find points on the curve y = 16 − x2x ∈ [−1, 1], where tangent is parallel to x-axis.


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


State Lagrange's mean value theorem ?


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.


Show that the local maximum value of `x + 1/x` is less than local minimum value.


If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.


The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×