Advertisements
Advertisements
Question
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?
Solution
\[f\left( x \right) = x^2 - 4x + 3\]
We know that a polynomial function is everywhere derivable and hence continuous.
So, being a polynomial function,
\[f\left( x \right)\]is continuous and derivable on \[\left[ 1, 3 \right]\] .
Also,
\[f\left( 1 \right) = \left( 1 \right)^2 - 4\left( 1 \right) + 3 = 1 - 4 + 3 = 0\]
\[f\left( 3 \right) = \left( 3 \right)^2 - 4\left( 3 \right) + 3 = 9 - 12 + 3 = 0\]
\[ \therefore f\left( 1 \right) = f\left( 3 \right) = 0\]
Thus, all the conditions of Rolle's theorem are satisfied.
Now, we have to show that there exists \[c \in \left( 1, 3 \right)\] such that \[f'\left( c \right) = 0\] .
We have
\[f\left( x \right) = x^2 - 4x + 3\]
\[ \Rightarrow f'\left( x \right) = 2x - 4\]
\[ \therefore f'\left( x \right) = 0 \Rightarrow 2x - 4 = 0 \Rightarrow x = 2\]
Thus,
\[c = 2 \in \left( 1, 3 \right) \text { such that } f'\left( c \right) = 0\]
Hence, Rolle's theorem is verified.
APPEARS IN
RELATED QUESTIONS
Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)
f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 1)2 on [0, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 4)2 on the interval [0, 4] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 2x on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = ex cos x on [−π/2, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x + cos x on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?
At what point on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?
It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 3x + 2 on [−1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = tan−1 x on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 + x − 1 on [0, 4] ?
Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?
Verify the hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?
Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?
Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?
Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?
Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?
State Rolle's theorem ?
If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?
If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].
For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is
If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]
The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is
The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is
Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π
Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`
The values of a for which y = x2 + ax + 25 touches the axis of x are ______.
If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.
If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is
Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :-