Advertisements
Advertisements
Question
It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?
Solution
As, the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x \[\in\] [1, 2] at the point x = \[\frac{4}{3}\]
\[\text { So,} f\left( 1 \right) = f\left( 2 \right)\]
\[ \Rightarrow \left( 1 \right)^3 + b \left( 1 \right)^2 + c\left( 1 \right) = \left( 2 \right)^3 + b \left( 2 \right)^2 + c\left( 2 \right)\]
\[ \Rightarrow 1 + b + c = 8 + 4b + 2c\]
\[ \Rightarrow 3b + c + 7 = 0 . . . . . \left( i \right)\]
\[\text { And } f'\left( \frac{4}{3} \right) = 0\]
\[ \Rightarrow 3 \left( \frac{4}{3} \right)^2 + 2b\left( \frac{4}{3} \right) + c = 0 \left[ As, f'\left( x \right) = 3 x^2 + 2bx + c \right]\]
\[ \Rightarrow \frac{16}{3} + \frac{8b}{3} + c = 0\]
\[ \Rightarrow 8b + 3c + 16 = 0 . . . . . \left( ii \right)\]
\[\left( ii \right) - \left( i \right) \times 3, \text { we ge }\]
\[8b - 9b + 16 - 21 = 0\]
\[ \Rightarrow - b - 5 = 0\]
\[ \Rightarrow b = - 5\]
\[\text { Substituting b } = - 5 \text { in} \left( i \right), \text { we get }\]
\[3\left( - 5 \right) + c + 7 = 0\]
\[ \Rightarrow - 15 + c + 7 = 0\]
\[ \Rightarrow c = 8\]
APPEARS IN
RELATED QUESTIONS
Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)
A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.
A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height
f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 1)2 on [0, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x2 − 1) (x − 2) on [−1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 4)2 on the interval [0, 4] ?
Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 2x on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?
Using Rolle's theorem, find points on the curve y = 16 − x2, x ∈ [−1, 1], where tangent is parallel to x-axis.
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 2x + 4 on [1, 5] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = tan−1 x on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 + x − 1 on [0, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?
Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?
Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?
Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.
Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.
If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.
The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:
If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is