English

F(X) = Sin 1 X for −1 ≤ X ≤ 1 Discuss the Applicability of Rolle'S Theorem for the Following Function on the Indicated Intervals ? - Mathematics

Advertisements
Advertisements

Question

f (x) = sin 1x for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?

Sum

Solution

The given function is f(x)=sin1x .

The domain of f is given to be [1,1] .

It is known that  limx0sin1x does not exist.

Thus,  f(x) is discontinuous at x = 0 on  [1,1]

Hence, Rolle's theorem is not applicable for the given function.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.1 [Page 8]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.1 | Q 1.3 | Page 8

RELATED QUESTIONS

f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f(x)={4x+5,0x12x3,1<x2 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = e1x2 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on [0,π2] ?


Using Rolle's theorem, find points on the curve y = 16 − x2x ∈ [−1, 1], where tangent is parallel to x-axis.


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 3x + 2 on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x)=x+1x on [1,3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x)=x24 on [2,4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = 14x1, 1≤ x ≤ 4 ?

 


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


State Rolle's theorem ?


Find the value of c prescribed by Lagrange's mean value theorem for the function f(x)=x24 defined on [2, 3] ?


If the polynomial equation a0xn+an1xn1+an2xn2+...+a2x2+a1x+a0=0 n positive integer, has two different real roots α and β, then between α and β, the equation n anxn1+(n1)an1xn2+...+a1=0 has .

 


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is 427πh3tan2α.


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = π6


At x = 5π6, f(x) = 2 sin3x + 3 cos3x is ______.


The least value of the function f(x) = ax+bx (where a > 0, b > 0, x > 0) is ______.


The least value of the function f(x) = 2 cos x + x in the closed interval [0,π2] is:


If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is


The function f(x) = [x], where [x] =greater integer of x, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.