Advertisements
Advertisements
Question
A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum?
Solution
Given that length of wire = 50 m
let the length of one piece for the shape of the square be x m
∴ Length of other pieces for the shape of circle = (50 - x) m
Now, perimeter of square = 4a = x
⇒ a = `(x)/(4)`
and circumference of circle = 2πr = 50 - x
⇒ r = `(50 - x)/(2π)`
Combined area = a2 + π r2
= `x^2/(16) + π ( (50 - x)/(2π))^2`
= `x^2/(16) + π (50 - x)^2/(4π^2)`
A = `x^2/(16) + (50 - x)^2/(4π)`
Differentiate w.r.t. x, we have
`(d"A")/(dx) = (2x)/(16) + (2 (50 - x) (-1))/(4π)`
`(d"A")/(dx) = (x)/(8) + (( x- 50 ))/(2π)`
= `(πx + 4x - 200)/( 8π)`
= `(x ( 4 + π) - 200)/ (8π)`
For maximum or minimum put `(d"A")/(dx)` = 0
∴ x (4 + π) - 200 = 0
x = `(200)/(4 + π)`
`(d^2"A")/(dx^2)` is positive ( >0)
For x = `(200)/(4 + π)`, because
`(d^2"A")/(dx^2) = (4 + π)/(8π)` ( independent of x)
So, length of wire for square shape is x = `(200)/(4 + π)` m
and length of wire for circle shape = 50 - x
= 50 - `(200)/(4 + π)`
= `(50π)/(4 + π)`m
APPEARS IN
RELATED QUESTIONS
A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.
f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x2 − 1) (x − 2) on [−1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2] ?
Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 2x on [0, π/2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin4 x + cos4 x on \[\left[ 0, \frac{\pi}{2} \right]\] ?
At what point on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?
Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 2x + 4 on [1, 5] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = sin x − sin 2x − x on [0, π] ?
Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?
Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?
Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?
State Rolle's theorem ?
State Lagrange's mean value theorem ?
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is
Show that the local maximum value of `x + 1/x` is less than local minimum value.
If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.
Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`
If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is