English

Verify Lagrange'S Mean Value Theorem for the Following Function on the Indicated Intervals. Find a Point 'C' in the Indicated Interval as Stated by the F(X) = Sin X − Sin 2x − X on [0, π] ? - Mathematics

Advertisements
Advertisements

Question

Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = sin x − sin 2x − x on [0, π] ?

Sum

Solution

We have ,

\[f\left( x \right) = \sin x - \sin2x - x\]

Since\[\sin x, \sin2x \text { & }x\] are everywhere continuous and differentiable]

Therefore, \[f\left( x \right)\] is continuous on \[\left[ 0, \pi \right]\] and differentiable on \[\left( 0, \pi \right)\]

Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some 
\[c \in \left( 0, \pi \right)\]  such that
\[f'\left( c \right) = \frac{f\left( \pi \right) - f\left( 0 \right)}{\pi - 0} = \frac{f\left( \pi \right) - f\left( 0 \right)}{\pi}\]
Now,\[f\left( x \right) = \sin x - \sin2x - x\]
\[f'\left( x \right) = \cos x - 2\cos2x - 1\],\[f\left( \pi \right) = - \pi\],\[f\left( 0 \right) = 0\]
∴ \[f'\left( x \right) = \frac{f\left( \pi \right) - f\left( 0 \right)}{\pi - 0}\]

\[\Rightarrow \cos x - 2\cos2x - 1 = - 1\]

\[ \Rightarrow \cos x - 2\cos2x = 0\]

\[ \Rightarrow \cos x - 4 \cos^2 x = - 2 \]

\[ \Rightarrow 4 \cos^2 x - \cos x - 2 = 0\]

\[ \Rightarrow \cos x = \frac{1}{8}\left( 1 \pm \sqrt{33} \right)\]

\[ \Rightarrow x = \cos^{- 1} \left[ \frac{1}{8}\left( 1 \pm \sqrt{33} \right) \right]\]

Thus, \[c = \cos^{- 1} \left( \frac{1 \pm \sqrt{33}}{8} \right) \in \left( 0, \pi \right)\] such that \[f'\left( c \right) = \frac{f\left( \pi \right) - f\left( 0 \right)}{\pi - 0}\].

Hence, Lagrange's theorem is verified.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.2 | Q 1.15 | Page 17

RELATED QUESTIONS

Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.


A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


At what point  on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?


At what point  on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 3x + 2 on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore  f(x) = tan1 x on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?


If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].

 


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.


If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×