Advertisements
Advertisements
प्रश्न
A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum?
उत्तर
Given that length of wire = 50 m
let the length of one piece for the shape of the square be x m
∴ Length of other pieces for the shape of circle = (50 - x) m
Now, perimeter of square = 4a = x
⇒ a = `(x)/(4)`
and circumference of circle = 2πr = 50 - x
⇒ r = `(50 - x)/(2π)`
Combined area = a2 + π r2
= `x^2/(16) + π ( (50 - x)/(2π))^2`
= `x^2/(16) + π (50 - x)^2/(4π^2)`
A = `x^2/(16) + (50 - x)^2/(4π)`
Differentiate w.r.t. x, we have
`(d"A")/(dx) = (2x)/(16) + (2 (50 - x) (-1))/(4π)`
`(d"A")/(dx) = (x)/(8) + (( x- 50 ))/(2π)`
= `(πx + 4x - 200)/( 8π)`
= `(x ( 4 + π) - 200)/ (8π)`
For maximum or minimum put `(d"A")/(dx)` = 0
∴ x (4 + π) - 200 = 0
x = `(200)/(4 + π)`
`(d^2"A")/(dx^2)` is positive ( >0)
For x = `(200)/(4 + π)`, because
`(d^2"A")/(dx^2) = (4 + π)/(8π)` ( independent of x)
So, length of wire for square shape is x = `(200)/(4 + π)` m
and length of wire for circle shape = 50 - x
= 50 - `(200)/(4 + π)`
= `(50π)/(4 + π)`m
APPEARS IN
संबंधित प्रश्न
Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.
f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 1)2 on [0, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x2 − 1) (x − 2) on [−1, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x(x −2)2 on the interval [0, 2] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?
Using Rolle's theorem, find points on the curve y = 16 − x2, x ∈ [−1, 1], where tangent is parallel to x-axis.
At what point on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 2x2 − x + 3 on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 3x + 2 on [−1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 2x + 4 on [1, 5] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = sin x − sin 2x − x on [0, π] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?
State Lagrange's mean value theorem ?
If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].
If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]
The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.
Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`
An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`
The values of a for which y = x2 + ax + 25 touches the axis of x are ______.
At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.
If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is