Advertisements
Advertisements
प्रश्न
Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?
उत्तर
Given:
\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right)^2\]
i.e. \[f\left( x \right) = x^3 + 4x - 4 x^2 - x^2 - 4 + 4x\]
\[f\left( x \right) = x^3 - 5 x^2 + 8x - 4\]
We know that a polynomial function is everywhere derivable and hence continuous.
So, being a polynomial function,
\[f\left( x \right)\] is continuous and derivable on \[\left[ 1, 2 \right]\] .
Also,
\[f\left( 1 \right) = \left( 1 \right)^3 - 5 \left( 1 \right)^2 + 8\left( 1 \right) - 4 = 0\]
\[f\left( 2 \right) = \left( 2 \right)^3 - 5 \left( 2 \right)^2 + 8\left( 2 \right) - 4 = 0\]
\[ \therefore f\left( 1 \right) = f\left( 2 \right) = 0\]
Thus, all the conditions of Rolle's theorem are satisfied.
Now, we have to show that there exists
\[c \in \left( 1, 2 \right)\] such that
\[f'\left( c \right) = 0\].
We have
\[f\left( x \right) = x^3 + 8x - 5 x^2 - 4\]
\[ \Rightarrow f'\left( x \right) = 3 x^2 + 8 - 10x\]
\[ \therefore f'\left( x \right) = 0 \Rightarrow 3 x^2 - 10x + 8 = 0\]
\[ \Rightarrow 3 x^2 - 6x - 4x + 8 = 0\]
\[ \Rightarrow 3x\left( x - 2 \right) - 4\left( x - 2 \right) = 0\]
\[ \Rightarrow \left( x - 2 \right)\left( 3x - 4 \right)\]
\[ \Rightarrow x = 2, \frac{4}{3}\]
Thus,
\[c = \frac{4}{3} \in \left( 1, 2 \right) \text { such that } f'\left( c \right) = 0\] .
Hence, Rolle's theorem is verified.
APPEARS IN
संबंधित प्रश्न
Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)
Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.
f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?
If f : [−5, 5] → R is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?
It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?
Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 2x2 − x + 3 on [0, 1] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 3x + 2 on [−1, 2] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?
Verify the hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?
Find a point on the parabola y = (x − 4)2, where the tangent is parallel to the chord joining (4, 0) and (5, 1) ?
Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?
State Lagrange's mean value theorem ?
If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
The value of c in Rolle's theorem for the function \[f\left( x \right) = \frac{x\left( x + 1 \right)}{e^x}\] defined on [−1, 0] is
The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.
Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`
If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.
The maximum value of sinx + cosx is ______.
If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.
Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :-