मराठी

Verify Lagrange'S Mean Value Theorem for the Following Function on the Indicated Intervals. Find a Point 'C' in the Indicated Interval as Stated by the Lagrange'Sf ( X ) = √ 25 − X 2 on [−3, 4] ? - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?

बेरीज

उत्तर

We have,

\[f\left( x \right) = \sqrt{25 - x^2}\]

Here, \[f\left( x \right)\] will exist,
if  \[25 - x^2 \geq 0\]

\[ \Rightarrow x^2 \leq 25\]

\[ \Rightarrow - 5 \leq x \leq 5\]

Since for each \[x \in \left[ - 3, 4 \right]\] , the function \[f\left( x \right)\] attains a unique definite value.

So,\[f\left( x \right)\] is continuous on \[\left[ - 3, 4 \right]\]

Also, \[f'\left( x \right) = \frac{1}{2\sqrt{25 - x^2}}\left( - 2x \right) = \frac{- x}{\sqrt{25 - x^2}}\] exists for all \[x \in \left( - 3, 4 \right)\]
 so ,\[f\left( x \right)\] is differentiable on \[\left( - 3, 4 \right)\] .
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists some 
\[c \in \left( - 3, 4 \right)\]  such that
\[f'\left( c \right) = \frac{f\left( 4 \right) - f\left( - 3 \right)}{4 + 3} = \frac{f\left( 4 \right) - f\left( - 3 \right)}{7}\]
Now,
\[f\left( x \right) = \sqrt{25 - x^2}\]
\[f'\left( x \right) = \frac{- x}{\sqrt{25 - x^2}}\] ,
\[f\left( - 3 \right) = 4\] ,
\[f\left( 4 \right) = 3\]
∴ \[f'\left( x \right) = \frac{f\left( 4 \right) - f\left( - 3 \right)}{4 + 3}\]

\[\Rightarrow \frac{- x}{\sqrt{25 - x^2}} = \frac{3 - 4}{7}\]

\[ \Rightarrow 49 x^2 = 25 - x^2 \]

\[ \Rightarrow x = \pm \frac{1}{\sqrt{2}}\]

Thus, \[c = \pm \frac{1}{\sqrt{2}} \in \left( - 3, 4 \right)\] such that

\[f'\left( c \right) = \frac{f\left( 4 \right) - f\left( - 3 \right)}{4 - \left( - 3 \right)}\] .

Hence, Lagrange's theorem is verified.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mean Value Theorems - Exercise 15.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 15 Mean Value Theorems
Exercise 15.2 | Q 1.09 | पृष्ठ १७

संबंधित प्रश्‍न

f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x + 4)2 on [0, 4] ?


Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


State Lagrange's mean value theorem ?


If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].

 


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]

 


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is 

 


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


The maximum value of sinx + cosx is ______.


Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`


If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×