मराठी

Verify Lagrange'S Mean Value Theorem for the Following Function on the Indicated Intervals. Find a Point 'C' in the Indicated Interval as Stated by the Lagrange'S F(X) = X3 − 2x2 − X + 3 on [0, 1] ? - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x3 − 2x2 − x + 3 on [0, 1] ?

बेरीज

उत्तर

We have,

\[f\left( x \right) = x^3 - 2 x^2 - x + 3 = 0\]

Since a polynomial function is everywhere continuous and differentiable.
Therefore, 

\[f\left( x \right)\] is continuous on \[\left[ 0, 1 \right]\]  and differentiable on \[\left( 0, 1 \right)\]
Thus, both conditions of Lagrange's mean value theorem are satisfied.
So, there must exist at least one real number ​ \[c \in \left( 0, 1 \right)\] such that \[f'\left( c \right) = \frac{f\left( 1 \right) - f\left( 0 \right)}{1 - 0}\]

Now, \[f\left( x \right) = x^3 - 2 x^2 - x + 3 = 0\]

\[\Rightarrow f'\left( x \right) = 3 x^2 - 4x - 1\] ,

\[f\left( 1 \right) = 1\] ,\[f\left( 0 \right) = 3\]
∴ \[f'\left( x \right) = \frac{f\left( 1 \right) - f\left( 0 \right)}{1 - 0}\]

\[\Rightarrow 3 x^2 - 4x - 1 = \frac{1 - 3}{1}\]

\[ \Rightarrow 3 x^2 - 4x - 1 + 2 = 0\]

\[ \Rightarrow 3 x^2 - 4x + 1 = 0\]

\[ \Rightarrow 3 x^2 - 3x - x + 1 = 0\]

\[ \Rightarrow \left( 3x - 1 \right)\left( x - 1 \right) = 0\]

\[ \Rightarrow x = \frac{1}{3}, 1\]

Thus, 

\[c = \frac{1}{3} \in \left( 0, 1 \right)\] such that \[f'\left( c \right) = \frac{f\left( 1 \right) - f\left( 0 \right)}{1 - 0}\] .Hence, Lagrange's theorem is verified.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mean Value Theorems - Exercise 15.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 15 Mean Value Theorems
Exercise 15.2 | Q 1.02 | पृष्ठ १७

संबंधित प्रश्‍न

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


At what point  on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x(x −1) on [1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (ee), the value of x is


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


The values of a for which y = x2 + ax + 25 touches the axis of x are ______.


At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.


If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×