English

F (X) = X2/3 on [−1, 1] Discuss the Applicability of Rolle'S Theorem for the Following Function on the Indicated Intervals ? - Mathematics

Advertisements
Advertisements

Question

f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?

Sum

Solution

The given function is \[f\left( x \right) = x^\frac{2}{3}\] on \[\left[ - 1, 1 \right]\] .

The domain of f is given to be \[\left[ - 1, 1 \right]\] .

Differentiating \[f\left( x \right)\] with respect to x, we get

\[f'\left( x \right) = \frac{2}{3} x^{- \frac{1}{3}}\]

We observe that at \[x = 0\] \[f'\left( x \right)\]  is not defined.

Hence, Rolle's theorem is not applicable for the given function.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mean Value Theorems - Exercise 15.1 [Page 8]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 15 Mean Value Theorems
Exercise 15.1 | Q 1.5 | Page 8

RELATED QUESTIONS

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ecos x on [−π/2, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = 2 sin x + sin 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


At what point  on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 1 on [2, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore  f(x) = tan1 x on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


Find the area of greatest rectangle that can be inscribed in an ellipse `x^2/"a"^2 + y^2/"b"^2` = 1


If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`


The least value of the function f(x) = `"a"x + "b"/x` (where a > 0, b > 0, x > 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×