हिंदी

If 4a + 2b + C = 0, Then the Equation 3ax2 + 2bx + C = 0 Has at Least One Real Root Lying in the Interval (A) (0, 1) (B) (1, 2) (C) (0, 2) (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval

विकल्प

  • (0, 1)

  • (1, 2)

  • (0, 2)

  • none of these

MCQ

उत्तर

 (0, 2)

\[Let\]

\[f\left( x \right) = a x^3 + b x^2 + cx + d . . . . . \left( 1 \right)\]

\[f\left( 0 \right) = d\]

\[f\left( 2 \right) = 8a + 4b + 2c + d\]

\[ = 2\left( 4a + 2b + c \right) + d\]

\[ = d \left( \because \left( 4a + 2b + c \right) = 0 \right)\]

f is continuous in the closed interval [0, 2] and is derivable in the open interval (0, 2).
Also, f(0) = f(2)
By Rolle's Theorem,

\[f'\left( \alpha \right) = 0        \text{ for }  0 < \alpha < 2\] 
 
\[\text { Now },   f'\left( x \right) = 3a x^2  + 2bx + c\] 
 
\[ \Rightarrow f'\left( \alpha \right) = 3a \alpha^2  + 2b\alpha + c = 0\] 
 
\[\text { Equation }  \left( 1 \right)  \text{has  atleast  one  root  in  the  interval } \left( 0, 2 \right) . \] 
\[\text { Thus,}   f'\left( x \right)  \text{must  have  root  in  the  interval }  \left( 0, 2 \right) .\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mean Value Theorems - Exercise 15.4 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 15 Mean Value Theorems
Exercise 15.4 | Q 2 | पृष्ठ १९

संबंधित प्रश्न

Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = (x − 1) (x − 2)2 on [1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = x2 + 5x + 6 on the interval [−3, −2]  ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin x − sin 2x on [0, π]?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x3 − 2x2 − x + 3 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?


Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?


State Rolle's theorem ?


State Lagrange's mean value theorem ?


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (ee), the value of x is


The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is 

 


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



Show that the local maximum value of `x + 1/x` is less than local minimum value.


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


The values of a for which y = x2 + ax + 25 touches the axis of x are ______.


The maximum value of sinx + cosx is ______.


At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.


If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is


Let y = `f(x)` be the equation of a curve. Then the equation of tangent at (xo, yo) is :- 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×