हिंदी

Verify Lagrange'S Mean Value Theorem for the Following Function on the Indicated Intervals. Find a Point 'C' in the Indicated Interval as Stated by the Lagrange'S Mean F(X) = X2 − 2x + 4 on [1, 5] ? - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 2x + 4 on [1, 5] ?

योग

उत्तर

We have,

\[f\left( x \right) = x^2 - 2x + 4\]

Since a polynomial function is everywhere continuous and differentiable.
Therefore, \[f\left( x \right)\] is continuous on \[\left[ 1, 5 \right]\] and differentiable on \[\left( 1, 5 \right)\] .

Thus, both conditions of Lagrange's mean value theorem are satisfied.
So, there must exist at least one real number
\[c \in \left( 1, 5 \right)\] such that \[f'\left( c \right) = \frac{f\left( 5 \right) - f\left( 1 \right)}{5 - 1} = \frac{f\left( 5 \right) - f\left( 1 \right)}{4}\]
Now, 
\[f\left( x \right) = x^2 - 2x + 4\]
\[\Rightarrow f'\left( x \right) = 2x - 2\] ,
\[f\left( 5 \right) = 25 - 10 + 4 = 19\] ,
\[f\left( 1 \right) = 1 - 2 + 4 = 3\]
∴  \[f'\left( x \right) = \frac{f\left( 5 \right) - f\left( 1 \right)}{4}\]

\[\Rightarrow 2x - 2 = \frac{19 - 3}{4}\]

\[ \Rightarrow 2x - 2 - 4 = 0\]

\[ \Rightarrow x = \frac{6}{2} = 3\]

Thus, \[c = 3 \in \left( 1, 5 \right)\] such that 

\[f'\left( c \right) = \frac{f\left( 5 \right) - f\left( 1 \right)}{5 - 1}\] .

Hence, Lagrange's theorem is verified.

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mean Value Theorems - Exercise 15.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 15 Mean Value Theorems
Exercise 15.2 | Q 1.06 | पृष्ठ १७

संबंधित प्रश्न

f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = x2/3 on [−1, 1] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for each of the following function on the indicated interval f (x) = cos 2 (x − π/4) on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = cos 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Using Rolle's theorem, find points on the curve y = 16 − x2x ∈ [−1, 1], where tangent is parallel to x-axis.


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?


Verify the  hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?

 


Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (ee), the value of x is


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


The values of a for which y = x2 + ax + 25 touches the axis of x are ______.


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`


The function f(x) = [x], where [x] =greater integer of x, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×