Advertisements
Advertisements
प्रश्न
Verify the hypothesis and conclusion of Lagrange's man value theorem for the function
f(x) = \[\frac{1}{4x - 1},\] 1≤ x ≤ 4 ?
उत्तर
The given function is \[f\left( x \right) = \frac{1}{4x - 1}\].
Since for each \[x \in \left[ 1, 4 \right]\] , vthe function attains a unique definite value, \[f\left( x \right)\] is continuous on \[\left[ 1, 4 \right]\] .
Also,\[f'\left( x \right) = \frac{- 4}{\left( 4x - 1 \right)^2}\] exists for all \[x \in \left[ 1, 4 \right]\]
Consequently, there exists some \[c \in \left( 1, 4 \right)\] such that
\[\Rightarrow f'\left( x \right) = \frac{\frac{1}{15} - \frac{1}{3}}{4 - 1} = \frac{- 4}{45}\]
\[ \Rightarrow \frac{- 4}{\left( 4x - 1 \right)^2} = \frac{- 4}{45}\]
\[ \Rightarrow \left( 4x - 1 \right)^2 = 45\]
\[ \Rightarrow 16 x^2 - 8x - 44 = 0\]
\[ \Rightarrow 4 x^2 - 2x - 11 = 0\]
\[ \Rightarrow x = \frac{1}{4}\left( 1 \pm 3\sqrt{5} \right)\]
Thus, \[c = \frac{1}{4}\left( 1 + 3\sqrt{5} \right) \in \left( 1, 4 \right)\] such that
\[f'\left( c \right) = \frac{f\left( 4 \right) - f\left( 1 \right)}{4 - 1}\].
Hence, Lagrange's theorem is verified.
APPEARS IN
संबंधित प्रश्न
Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.
f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = x(x − 1)2 on [0, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = 4sin x on [0, π] ?
Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?
At what point on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?
At what point on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?
Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x2 − 2x + 4 on [1, 5] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore f(x) = (x − 1)(x − 2)(x − 3) on [0, 4] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = sin x − sin 2x − x on [0, π] ?
Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?
Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).
If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?
If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval
If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]
The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is
Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.
Show that the local maximum value of `x + 1/x` is less than local minimum value.
Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π
Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`
If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.
The maximum value of sinx + cosx is ______.
Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`
If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.
The least value of the function f(x) = 2 cos x + x in the closed interval `[0, π/2]` is:
It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.