हिंदी

Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the local maxima and local minima, of the function f(x) = sin x − cos x, 0 < x < 2π.

उत्तर

We have

`f(x)=sinx−cosx             0<x<2π `

`f'(x)=ddx(sinx−cosx)        `

`=cosx+sinx`

For maxima and minima, we have

`f'(x)=0`

`⇒cosx+sinx=0`

`⇒cosx=−sinx`

`⇒x=(3π)/4,(7π)/4`

Now, 

`f"(x)=d/dx(cosx+sinx)                   `

`=−sinx+cosx`

`"At " x=(3π)/4`

`f"((3π)/4)=−sin((3π)/4)+cos((3π)/4)`

`=-1/sqrt2-1/sqrt2`

`=-sqrt2`

`⇒f"((3π)/4)<0`

Thus`x=(3π)/4`  is the point of local maxima.

Local maximum value `f((3π)/4)`

`=sin((3π)/4)−cos((3π)/4)`

`=1/sqrt2+1/sqrt2=sqrt2`

`At  x=(7π)/4`

 

`f"((7π)/4)=−sin((7π)/4)+cos((7π)/4)`

`=1/sqrt2+1/sqrt2=sqrt2`

`⇒f"((7π)/4)>0`

Thus`x=(7π)/4` is the point of local minima.

Local minimum value of `f(x)=f((7π)/4)`

`sin((7π)/4)-cos((7π)/4)`

`=-1/sqrt2-1/sqrt2`

`=-sqrt2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Delhi Set 1

संबंधित प्रश्न

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


f(x) = 3 + (x − 2)2/3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ? 


f (x) = sin \[\frac{1}{x}\] for −1 ≤ x ≤ 1 Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval   f (x) = x(x − 4)2 on the interval [0, 4] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = cos 2x on [−π/4, π/4] ?


Using Rolle's theorem, find points on the curve y = 16 − x2x ∈ [−1, 1], where tangent is parallel to x-axis.


At what point  on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 3x + 2 on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


State Rolle's theorem ?


If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].

 


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is 

 


If f (x) = ex sin x in [0, π], then c in Rolle's theorem is



Find the maximum and minimum values of f(x) = secx + log cos2x, 0 < x < 2π


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


The values of a for which y = x2 + ax + 25 touches the axis of x are ______.


Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`


If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×