हिंदी

At What Point on the Following Curve, is the Tangent Parallel to X-axis Y = X2 on [−2, 2] ? - Mathematics

Advertisements
Advertisements

प्रश्न

At what point  on the following curve, is the tangent parallel to x-axis y = x2 on [−2, 2]
?

योग

उत्तर

Let \[f\left( x \right) = x^2\]

Since \[f\left( x \right)\] is a polynomial function, it is continuous on \[\left[ - 2, 2 \right]\] and differentiable on \[\left( - 2, 2 \right)\] .

Also, \[f\left( 2 \right) = f\left( - 2 \right) = 4\]
Thus, all the conditions of Rolle's theorem are satisfied.
Consequently, there exists at least one point c
\[\in \left( - 2, 2 \right)\] for which  \[f'\left( c \right) = 0\] .
But \[f'\left( c \right) = 0 \Rightarrow 2c = 0 \Rightarrow c = 0\]
\[\therefore f\left( c \right) = f\left( 0 \right) = 0\]
By the geometrical interpretation of Rolle's theorem, \[\left( 0, 0 \right)\] is the point on \[y = x^2\] , where the tangent is parallel to the x-axis.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mean Value Theorems - Exercise 15.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 15 Mean Value Theorems
Exercise 15.1 | Q 8.1 | पृष्ठ ९

संबंधित प्रश्न

Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 4x + 3 on [1, 3] ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = x(x − 1)2 on [0, 1] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = x(x −2)2 on the interval [0, 2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?


At what point  on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


It is given that the Rolle's theorem holds for the function f(x) = x3 + bx2 + cx, x  \[\in\] at the point x = \[\frac{4}{3}\] , Find the values of b and c ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore  f(x) = tan1 x on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = x + \frac{1}{x} \text { on }[1, 3]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 + x − 1 on [0, 4] ?


Discuss the applicability of Lagrange's mean value theorem for the function
f(x) = | x | on [−1, 1] ?


Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?


Find a point on the curve y = x3 + 1 where the tangent is parallel to the chord joining (1, 2) and (3, 28) ?


Let C be a curve defined parametrically as \[x = a \cos^3 \theta, y = a \sin^3 \theta, 0 \leq \theta \leq \frac{\pi}{2}\] . Determine a point P on C, where the tangent to C is parallel to the chord joining the points (a, 0) and (0, a).


If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].

 


If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]

 


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis ?


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


If f(x) = `1/(4x^2 + 2x + 1)`, then its maximum value is ______.


Minimum value of f if f(x) = sinx in `[(-pi)/2, pi/2]` is ______.


At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.


Prove that f(x) = sinx + `sqrt(3)` cosx has maximum value at x = `pi/6`


At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.


If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×