मराठी

Find the Value of C Prescribed by Lagrange'S Mean Value Theorem for the Function F ( X ) = √ X 2 − 4 Defined on [2, 3] ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of c prescribed by Lagrange's mean value theorem for the function \[f\left( x \right) = \sqrt{x^2 - 4}\] defined on [2, 3] ?

बेरीज

उत्तर

We have

\[f\left( x \right) = \sqrt{x^2 - 4}\]

Here, \[f\left( x \right)\] will exist, if 

\[x^2 - 4 \geq 0\]
\[ \Rightarrow x \leq - 2 \text { or } x \geq 2\]

Since for each \[x \in \left[ 2, 3 \right]\] , the function \[f\left( x \right)\] attains a unique definite value, \[f\left( x \right)\] is continuous on  \[\left[ 2, 3 \right]\].

Also, \[f'\left( x \right) = \frac{1}{2\sqrt{x^2 - 4}}\left( 2x \right) = \frac{x}{\sqrt{x^2 - 4}}\] exists for all \[x \in \left( 2, 3 \right)\].

So, \[f\left( x \right)\] is differentiable on \[\left( 2, 3 \right)\] .

Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists\[c \in \left( 2, 3 \right)\] such that

\[f'\left( c \right) = \frac{f\left( 3 \right) - f\left( 2 \right)}{3 - 2} = \frac{f\left( 3 \right) - f\left( 2 \right)}{1}\]
Now,
\[f\left( x \right) = \sqrt{x^2 - 4}\]
\[f'\left( x \right) = \frac{x}{\sqrt{x^2 - 4}}\]\[f\left( 3 \right) = \sqrt{5}\] ,\[f\left( 2 \right) = 0\]
∴  \[f'\left( x \right) = \frac{f\left( 3 \right) - f\left( 2 \right)}{3 - 2}\]

\[\Rightarrow \frac{x}{\sqrt{x^2 - 4}} = \sqrt{5}\]

\[ \Rightarrow \frac{x^2}{x^2 - 4} = 5 \]

\[ \Rightarrow x^2 = 5 x^2 - 20\]

\[ \Rightarrow 4 x^2 = 20\]

\[ \Rightarrow x = \pm \sqrt{5}\]

Thus, \[c = \sqrt{5} \in \left( 2, 3 \right)\] such that \[f'\left( c \right) = \frac{f\left( 3 \right) - f\left( 2 \right)}{3 - 2}\].

Hence, Lagrange's theorem is verified.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mean Value Theorems - Exercise 15.3 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 15 Mean Value Theorems
Exercise 15.3 | Q 5 | पृष्ठ १९

संबंधित प्रश्‍न

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is `4/27 pih^3` tan2α.


A cone is inscribed in a sphere of radius 12 cm. If the volume of the cone is maximum, find its height


\[f\left( x \right) = \begin{cases}- 4x + 5, & 0 \leq x \leq 1 \\ 2x - 3, & 1 < x \leq 2\end{cases}\] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval  f (x) = (x2 − 1) (x − 2) on [−1, 2] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = sin 2x on [0, π/2] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = ex sin x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = cos 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[\frac{\sin x}{e^x}\] on 0 ≤ x ≤ π ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = log (x2 + 2) − log 3 on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{x}{2} - \sin\frac{\pi x}{6} \text { on }[ - 1, 0]\]?


At what point  on the following curve, is the tangent parallel to x-axis y = \[e^{1 - x^2}\] on [−1, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 − 3x + 2 on [−1, 2] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theore \[f\left( x \right) = \sqrt{25 - x^2}\] on [−3, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 + x − 1 on [0, 4] ?


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Find the points on the curve y = x3 − 3x, where the tangent to the curve is parallel to the chord joining (1, −2) and (2, 2) ?


State Lagrange's mean value theorem ?


If the value of c prescribed in Rolle's theorem for the function f (x) = 2x (x − 3)n on the interval \[[0, 2\sqrt{3}] \text { is } \frac{3}{4},\] write the value of n (a positive integer) ?


If the polynomial equation \[a_0 x^n + a_{n - 1} x^{n - 1} + a_{n - 2} x^{n - 2} + . . . + a_2 x^2 + a_1 x + a_0 = 0\] n positive integer, has two different real roots α and β, then between α and β, the equation \[n \ a_n x^{n - 1} + \left( n - 1 \right) a_{n - 1} x^{n - 2} + . . . + a_1 = 0 \text { has }\].

 


Rolle's theorem is applicable in case of ϕ (x) = asin x, a > a in


The value of c in Rolle's theorem when
f (x) = 2x3 − 5x2 − 4x + 3, x ∈ [1/3, 3] is

 


When the tangent to the curve y = x log x is parallel to the chord joining the points (1, 0) and (ee), the value of x is


The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is 

 


A wire of length 50 m is cut into two pieces. One piece of the wire is bent in the shape of a square and the other in the shape of a circle. What should be the length of each piece so that the combined area of the two is minimum? 


A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above  LPP and solve it graphically and find the maximum profit.


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when θ = `pi/6`


At x = `(5pi)/6`, f(x) = 2 sin3x + 3 cos3x is ______.


If f(x) = ax2 + 6x + 5 attains its maximum value at x = 1, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×