मराठी

Find a Point on the Parabola Y = (X − 3)2, Where the Tangent is Parallel to the Chord Joining (3, 0) and (4, 1) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find a point on the parabola y = (x − 3)2, where the tangent is parallel to the chord joining (3, 0) and (4, 1) ?

बेरीज

उत्तर

​Let:

\[f\left( x \right) = \left( x - 3 \right)^2 = x^2 - 6x + 9\]

The tangent to the curve is parallel to the chord joining the points \[\left( 3, 0 \right)\] and \[\left( 4, 1 \right)\]. Assume that the chord joins the points \[\left( a, f\left( a \right) \right)\] and \[\left( b, f\left( b \right) \right)\] .

\[\therefore\] \[a = 3, b = 4\]

The polynomial function is everywhere continuous and differentiable.
So,\[f\left( x \right) = x^2 - 6x + 9\] is continuous on \[\left[ 3, 4 \right]\] and differentiable on \[\left( 3, 4 \right)\] .

Thus, both the conditions of Lagrange's theorem are satisfied.
Consequently, there exists \[c \in \left( 3, 4 \right)\] such that \[f'\left( c \right) = \frac{f\left( 4 \right) - f\left( 3 \right)}{4 - 3}\].

Now, 

\[f\left( x \right) = x^2 - 6x + 9\]\[\Rightarrow\] \[f'\left( x \right) = 2x - 6\],\[f\left( 3 \right) = 0, f\left( 4 \right) = 1\]\[\therefore\] \[f'\left( x \right) = \frac{f\left( 4 \right) - f\left( 3 \right)}{4 - 3}\]

\[\Rightarrow\] \[2x - 6 = \frac{1 - 0}{4 - 3} \Rightarrow 2x = 7 \Rightarrow x = \frac{7}{2}\]
Thus, \[c = \frac{7}{2} \in \left( 3, 4 \right)\] such that ​\[f'\left( c \right) = \frac{f\left( 4 \right) - f\left( 3 \right)}{4 - 3}\] .
Clearly,
\[f\left( c \right) = \left( \frac{7}{2} - 3 \right)^2 = \frac{1}{4}\]
Thus, \[\left( c, f\left( c \right) \right)\] , i.e. \[\left( \frac{7}{2}, \frac{1}{4} \right)\] is a point on the given curve where the tangent is parallel to the chord joining the points \[\left( 3, 0 \right)\] and \[\left( 4, 1 \right)\].
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mean Value Theorems - Exercise 15.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 15 Mean Value Theorems
Exercise 15.2 | Q 7 | पृष्ठ १८

संबंधित प्रश्‍न

Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x-cosx,x ∈ (0,π)


A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of ______.


f (x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceeding x Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


f (x) = 2x2 − 5x + 3 on [1, 3] Discuss the applicability of Rolle's theorem for the following function on the indicated intervals ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 8x + 12 on [2, 6] ?


Verify Rolle's theorem for the following function on the indicated interval  f(x) = cos 2x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = sin 3x on [0, π] ?


Verify Rolle's theorem for the following function on the indicated interval f (x) = \[{e^{1 - x}}^2\] on [−1, 1] ?


Verify Rolle's theorem for the following function on the indicated interval \[f\left( x \right) = \frac{6x}{\pi} - 4 \sin^2 x \text { on } [0, \pi/6]\] ?


Verify Rolle's theorem for the following function on the indicated interval f(x) = x2 − 5x + 4 on [1, 4] ?


At what point  on the following curve, is the tangent parallel to x-axis y = 12 (x + 1) (x − 2) on [−1, 2] ?


If f : [−5, 5] → is differentiable and if f' (x) doesnot vanish anywhere, then prove that f (−5) ± f (5) ?


Examine if Rolle's theorem is applicable to any one of the following functions.
(i) f (x) = [x] for x ∈ [5, 9]
(ii) f (x) = [x] for x ∈ [−2, 2]
Can you say something about the converse of Rolle's Theorem from these functions?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x2 − 3x + 1 on [1, 3] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = 2x − x2 on [0, 1] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem \[f\left( x \right) = \sqrt{x^2 - 4} \text { on }[2, 4]\] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem  f(x) = x2 + x − 1 on [0, 4] ?


Verify Lagrange's mean value theorem for the following function on the indicated intervals. find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem f(x) = x3 − 5x2 − 3x on [1, 3] ?


Show that the lagrange's mean value theorem is not applicable to the function
f(x) = \[\frac{1}{x}\] on [−1, 1] ?


Find a point on the curve y = x2 + x, where the tangent is parallel to the chord joining (0, 0) and (1, 2) ?


Using Lagrange's mean value theorem, prove that (b − a) sec2 a < tan b − tan a < (b − a) sec2 b
where 0 < a < b < \[\frac{\pi}{2}\] ?


If f (x) = Ax2 + Bx + C is such that f (a) = f (b), then write the value of c in Rolle's theorem ? 


If 4a + 2b + c = 0, then the equation 3ax2 + 2bx + c = 0 has at least one real root lying in the interval


For the function f (x) = x + \[\frac{1}{x}\] ∈ [1, 3], the value of c for the Lagrange's mean value theorem is 

 


If from Lagrange's mean value theorem, we have \[f' \left( x_1 \right) = \frac{f' \left( b \right) - f \left( a \right)}{b - a}, \text { then }\]

 


The value of c in Lagrange's mean value theorem for the function f (x) = x (x − 2) when x ∈ [1, 2] is


The value of c in Rolle's theorem for the function f (x) = x3 − 3x in the interval [0,\[\sqrt{3}\]] is 

 


A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of types A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 4 hours available for assembling. The profit is ₹ 50 each for type A and ₹60 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize profit? Formulate the above  LPP and solve it graphically and find the maximum profit.


Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of the cone and the greatest volume of the cylinder is `(4)/(27) pi"h"^3 tan^2 α`.


Show that the local maximum value of `x + 1/x` is less than local minimum value.


Find the difference between the greatest and least values of the function f(x) = sin2x – x, on `[- pi/2, pi/2]`


The maximum value of sinx + cosx is ______.


At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum? Also find the maximum slope.


If the graph of a differentiable function y = f (x) meets the lines y = – 1 and y = 1, then the graph ____________.


It is given that at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2]. Find the value of a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×