Advertisements
Advertisements
प्रश्न
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
उत्तर
We have x = 3cos θ – cos3θ
Therefore, `"dx"/("d"theta)` = –3sin θ + 3cos2θ sinθ
= – 3sinθ (1 – cos2θ)
= –3sin3θ .
`"dy"/("d"theta) = - (cos^3theta)/(sin^3theta)`.
Therefore, slope of normal = `+ (sin^3theta)/(cos^2theta)`
Hence the equation of normal is
y – (3sinθ – sin3θ) = `(sin^3theta)/(cos^2theta)` [x – (3cosθ – cos3θ)]
⇒ y cos3θ – 3sinθ cos3θ + sin3θ cos3θ = xsin3θ – 3sin3θ cosθ + sin3θ cos3θ
⇒ y cos3θ – xsin3θ = 3sinθ cosθ (cos2θ – sin2θ)
= `3/2 sin2theta * cos2theta`
= `3/4 sin4theta`
or 4 (y cos3θ – x sin3θ) = 3 sin4θ.
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the angle of intersection of the curves y2 = x and x2 = y.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
Let `y = f(x)` be the equation of the curve, then equation of normal is
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3