मराठी

If the straight line x cosα + y sinα = p touches the curve abx2a2+y2b2 = 1, then prove that a2 cos2α + b2 sin2α = p2. - Mathematics

Advertisements
Advertisements

प्रश्न

If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.

बेरीज

उत्तर

The given curve is `x^2/"a"^2 + y^2/"b"^2` = 1   ....(i)

And the straight line x cos a + y sin a = p

Differentiating equation (i) w.r.t. x, we get

`1/"a"^2 * 2x + 1/"b"^2 * 2y * "dy"/"dx"` = 0

⇒ `x/"a"^2 + y/"b"^2 "dy"/"dx"` = 0

⇒ `"dy"/"dx" = - "b"^2/"a"^2 * x/y`

So the slope of the curve = `(-"b"^2)/"a"^2 * x/y`

Now differentiating eq. (ii) w.r.t. x, we have

`cos alpha + sin alpha * "dy"/"dx"` = 0

∴ `"dy"/"dx" = (- cos alpha)/sinalpha`

= `- cot alpha`

So, the slope of the straight line = `- cot alpha`

If the line is the tangent to the curve, then

`(-"b"^2)/"a"^2 * x/y = - cot alpha`

⇒ `x/y = "a"^2/"b"^2 * cot alpha`

⇒ x = `"a"^2/"b"^2 cot alpha * y`

Now from equation (ii) we have x cos a + y sin a = p

⇒ `"a"^2/"b"^2 * cot alpha * y * cos alpha + y sin alpha` = p

⇒ `"a"^2 cot alpha * cos alpha y + "b"^2 sin alpha y = "b"^2"p"`

⇒ `"a"^2 cosalpha/sinalpha * cos alpha y + "b"^2 sin alpha y = "b"^2"p"`

⇒ `"a"^2 cos^2 alpha y + "b"^2 sin^2 alpha y = "b"^2 sin alpha "p"`

⇒ `"a"^2 cos^2 alpha + "b"^2 sin^2 alpha = "b"^2/y * sin alpha * "p"`

⇒ `"a"^2cos^2alpha + "b"^2 sin^2alpha = "p" * "p"`  ....`[because "b"^2/y sin alpha = "p"]`

Hence, a2 cos2α + b2 sin2α = p

Alternate method:

We know that y = mx + c will touch the ellipse

`x^2/"a"^2 + y^2/"b"^2` = 1 if c2 = a2m2 + b2

Here equation of straight line is x cos α + y sin α = p and that of ellipse is `x^2/"a"^2 + y^2/"b"^2` = 1

x cos α + y sin α = p

⇒ y sin α= – x cos α + p

⇒ y = `- x cosalpha/sinalpha + "P"/sinalpha`

⇒ y = `- x cot alpha + "P"/sinalpha`

Comparing with y = mx + c, we get

m = `- cot alpha` and c = `"P"/sinalpha`

So, according to the condition, we get c2 = a2m2 + b2

`"P"^2/(sin^2alpha) = "a"^2(- cot alpha)^2 + "b"^2`

 ⇒ `"P"^2/(sin^2alpha) = ("a"^2 cos^2alpha)/(sin^2alpha) + "b"^2`

⇒ p2 = a2 cos2α + b2 sin2α

Hence, a2 cos2α + b2 sin2α = p2

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 28 | पृष्ठ १३७

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×