मराठी

The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.

पर्याय

  • Touch each other

  • Cut at right angle

  • Cut at an angle `pi/3`

  • Cut at an angle `pi/4`

MCQ
रिकाम्या जागा भरा

उत्तर

The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 cut at right angle.

Explanation:

From first equation of the curve

We have 3x2 – 3y2 – 6xy `"dy"/"dx"` = 0

⇒ `"dy"/"dx" = (x^2 - y^2)/(2xy)` = (m1) say and second equation of the curve gives

`6xy + 3x^2 "dy"/"dx" - 3y^2 "dy"/"dx"` = 0

⇒ `"dy"/"dx" = (-2y)/(x^2 - y^2)` = (m2) say

Since m1 . m2 = –1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Solved Examples [पृष्ठ १३२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Solved Examples | Q 20 | पृष्ठ १३२

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×