मराठी

Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.

बेरीज

उत्तर

`The equation of the given curve is y = x2 − 2x + 7 

On differentiating with respect to x, we get:

`"dy"/"dx" = 2x - 2`

The equation of the line is 5y − 15x = 13.

5y − 15x = 13

⇒ `"y" = 3x + 13/5`

This is of the form y = mx + c.

∴ Slope of the line = 3

If a tangent is perpendicular to the line 5y − 15x = 13, then the slope of the tangent is

`(-1)/("slope of the line") = (-1)/3`

⇒ 2x - 2 = `(-1)/3`

⇒ 2x = `(-1)/3 + 2`

⇒ 2x = `5/3`

⇒ x = `5/6`

Now, x = `5/6`

`=> "y" = 25/36 - 10/6 + 7 = (25 - 60 + 252)/36 = 217/36`

Thus, the equation of the tangent passing through `(5/6, 217/36)` is given by,

`"y" - 217/36 = -1/3 (x - 5/6)`

`=> (36"y" - 217)/36 = (- 1)/18 (6x - 5)`

⇒ 36y - 217 = -2(6x - 5)

⇒ 36y - 217 = -12x + 10

⇒ 36y + 12x - 227 = 0

Hence, the equation of the tangent line to the given curve (which is perpendicular to line 5y - 15x = 13) is 36y + 12x - 227 = 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.3 [पृष्ठ २१२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.3 | Q 15. (b) | पृष्ठ २१२

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


The curve y = `x^(1/5)` has at (0, 0) ______.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×