Advertisements
Advertisements
प्रश्न
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
उत्तर
\[x = \theta + \sin \theta \text { and } y = 1 + \cos \theta\]
\[\frac{dx}{d\theta} = 1 + \cos \theta \text { and } \frac{dy}{d\theta} = - \sin \theta\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{- \sin \theta}{1 + \cos \theta}\]
\[\text { Slope of tangent }= \left( \frac{dy}{dx} \right)_{\theta = \frac{\pi}{4}} =\frac{- \sin \frac{\pi}{4}}{1 + \cos \frac{\pi}{4}}=\frac{\frac{- 1}{\sqrt{2}}}{1 + \frac{1}{\sqrt{2}}}=\frac{-1}{\sqrt{2} + 1}=\frac{-1}{\sqrt{2} + 1}\times\frac{\sqrt{2} - 1}{\sqrt{2} - 1}=1 - \sqrt{2}\]
\[\left( x_1 , y_1 \right) = \left( \frac{\pi}{4} + \sin\frac{\pi}{4}, 1 + \cos \frac{\pi}{4} \right) = \left( \frac{\pi}{4} + \frac{1}{\sqrt{2}}, 1 + \frac{1}{\sqrt{2}} \right)\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m\left( x - x_1 \right)\]
\[ \Rightarrow y - \left( 1 + \frac{1}{\sqrt{2}} \right) = \left( 1 - \sqrt{2} \right)\left[ x - \left( \frac{\pi}{4} + \frac{1}{\sqrt{2}} \right) \right]\]
\[ \Rightarrow y - 1 - \frac{1}{\sqrt{2}} = \left( 1 - \sqrt{2} \right)\left[ x - \frac{\pi}{4} - \frac{1}{\sqrt{2}} \right]\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.