Advertisements
Advertisements
प्रश्न
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
उत्तर
\[x = \theta + \sin \theta \text { and } y = 1 + \cos \theta\]
\[\frac{dx}{d\theta} = 1 + \cos \theta \text { and } \frac{dy}{d\theta} = - \sin \theta\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{- \sin \theta}{1 + \cos \theta}\]
\[\text { Slope of tangent }= \left( \frac{dy}{dx} \right)_{\theta = \frac{\pi}{4}} =\frac{- \sin \frac{\pi}{4}}{1 + \cos \frac{\pi}{4}}=\frac{\frac{- 1}{\sqrt{2}}}{1 + \frac{1}{\sqrt{2}}}=\frac{-1}{\sqrt{2} + 1}=\frac{-1}{\sqrt{2} + 1}\times\frac{\sqrt{2} - 1}{\sqrt{2} - 1}=1 - \sqrt{2}\]
\[\left( x_1 , y_1 \right) = \left( \frac{\pi}{4} + \sin\frac{\pi}{4}, 1 + \cos \frac{\pi}{4} \right) = \left( \frac{\pi}{4} + \frac{1}{\sqrt{2}}, 1 + \frac{1}{\sqrt{2}} \right)\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m\left( x - x_1 \right)\]
\[ \Rightarrow y - \left( 1 + \frac{1}{\sqrt{2}} \right) = \left( 1 - \sqrt{2} \right)\left[ x - \left( \frac{\pi}{4} + \frac{1}{\sqrt{2}} \right) \right]\]
\[ \Rightarrow y - 1 - \frac{1}{\sqrt{2}} = \left( 1 - \sqrt{2} \right)\left[ x - \frac{\pi}{4} - \frac{1}{\sqrt{2}} \right]\]
APPEARS IN
संबंधित प्रश्न
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The equation of normal to the curve y = tanx at (0, 0) is ______.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.