हिंदी

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point Y = X2 at (0, 0) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?

उत्तर

\[y= x^2 \]

\[\text { Differentiating both sides w.r.t.x,} \]

\[\frac{dy}{dx} = 2x\]

\[\text { Given } \left( x_1 , y_1 \right) = \left( 0, 0 \right)\]

\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( 0, 0 \right) =2\left( 0 \right)=0\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m\left( x - x_1 \right)\]

\[ \Rightarrow y - 0 = 0 \left( x - 0 \right)\]

\[ \Rightarrow y = 0\]

\[\text { Equation of normal is,}\]

\[ \Rightarrow y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 0 = \frac{- 1}{0} \left( x - 0 \right)\]

\[ \Rightarrow x = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 3.03 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×