Advertisements
Advertisements
प्रश्न
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
विकल्प
1
2
3
`1/2`
उत्तर
1
Let (x1, y1) be the required point.
The slope of the given line is m.
We have
\[y^2 = 4x\]
\[ \Rightarrow 2y \frac{dy}{dx} = 4\]
\[ \Rightarrow \frac{dy}{dx} = \frac{4}{2y} = \frac{2}{y}\]
\[\text { Slope of the tangent } =\left( \frac{dy}{dx} \right) {}_\left( x_1 , y_1 \right) =\frac{2}{y_1}\]
\[\text { Given }:\]
\[\text { Slope of the tangent }=m\]
\[\text { Now }, \]
\[\frac{2}{y_1} = m . . . \left( 1 \right)\]
Because the given line is a tangent to the given curve at point (x1, y1), this point lies on both the line and the curve.
\[\therefore y_1 = m x_1 + 1 \text { and } {y_1}^2 = 4 x_1 \]
\[ \Rightarrow x_1 = \frac{y_1 - 1}{m} \text { and } x_1 = \frac{{y_1}^2}{4}\]
\[So,\]
\[\frac{y_1 - 1}{m} = \frac{{y_1}^2}{4}\]
\[ \Rightarrow \frac{y_1 - 1}{\left( \frac{2}{y_1} \right)} = \frac{{y_1}^2}{4} [\text { From } (1)]\]
\[ \Rightarrow \frac{y_1 \left( y_1 - 1 \right)}{2} = \frac{{y_1}^2}{4}\]
\[ \Rightarrow 2 {y_1}^2 - 2 y_1 = {y_1}^2 \]
\[ \Rightarrow {y_1}^2 - 2 y_1 = 0\]
\[ \Rightarrow {y_1}^2 - 2 y_1 = 0\]
\[ \Rightarrow y_1 \left( y_1 - 2 \right) = 0\]
\[ \Rightarrow y_1 = 0, 2\]
\[\text { So, For } y_1 =0,m = \frac{2}{0} = \infty \]
\[\text { For } y_1 =2,m = \frac{2}{2} = 1\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.