Advertisements
Advertisements
प्रश्न
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
पर्याय
1
2
3
`1/2`
उत्तर
1
Let (x1, y1) be the required point.
The slope of the given line is m.
We have
\[y^2 = 4x\]
\[ \Rightarrow 2y \frac{dy}{dx} = 4\]
\[ \Rightarrow \frac{dy}{dx} = \frac{4}{2y} = \frac{2}{y}\]
\[\text { Slope of the tangent } =\left( \frac{dy}{dx} \right) {}_\left( x_1 , y_1 \right) =\frac{2}{y_1}\]
\[\text { Given }:\]
\[\text { Slope of the tangent }=m\]
\[\text { Now }, \]
\[\frac{2}{y_1} = m . . . \left( 1 \right)\]
Because the given line is a tangent to the given curve at point (x1, y1), this point lies on both the line and the curve.
\[\therefore y_1 = m x_1 + 1 \text { and } {y_1}^2 = 4 x_1 \]
\[ \Rightarrow x_1 = \frac{y_1 - 1}{m} \text { and } x_1 = \frac{{y_1}^2}{4}\]
\[So,\]
\[\frac{y_1 - 1}{m} = \frac{{y_1}^2}{4}\]
\[ \Rightarrow \frac{y_1 - 1}{\left( \frac{2}{y_1} \right)} = \frac{{y_1}^2}{4} [\text { From } (1)]\]
\[ \Rightarrow \frac{y_1 \left( y_1 - 1 \right)}{2} = \frac{{y_1}^2}{4}\]
\[ \Rightarrow 2 {y_1}^2 - 2 y_1 = {y_1}^2 \]
\[ \Rightarrow {y_1}^2 - 2 y_1 = 0\]
\[ \Rightarrow {y_1}^2 - 2 y_1 = 0\]
\[ \Rightarrow y_1 \left( y_1 - 2 \right) = 0\]
\[ \Rightarrow y_1 = 0, 2\]
\[\text { So, For } y_1 =0,m = \frac{2}{0} = \infty \]
\[\text { For } y_1 =2,m = \frac{2}{2} = 1\]
APPEARS IN
संबंधित प्रश्न
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.