मराठी

The Line Y = Mx + 1 is a Tangent to the Curve Y2 = 4x, If the Value Of M Is - Mathematics

Advertisements
Advertisements

प्रश्न

The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .

पर्याय

  • 1

  • 2

  • 3

  • `1/2`

MCQ

उत्तर

1

 

Let (x1, y1) be the required point.

The slope of the given line is m.

We have

\[y^2 = 4x\]

\[ \Rightarrow 2y \frac{dy}{dx} = 4\]

\[ \Rightarrow \frac{dy}{dx} = \frac{4}{2y} = \frac{2}{y}\]

\[\text { Slope of the tangent } =\left( \frac{dy}{dx} \right) {}_\left( x_1 , y_1 \right) =\frac{2}{y_1}\]

\[\text { Given }:\]

\[\text { Slope of the tangent }=m\]

\[\text { Now }, \]

\[\frac{2}{y_1} = m . . . \left( 1 \right)\]

Because the given line is a tangent to the given curve at point (x1, y1), this point lies on both the line and the curve.

\[\therefore y_1 = m x_1 + 1 \text { and } {y_1}^2 = 4 x_1 \]

\[ \Rightarrow x_1 = \frac{y_1 - 1}{m} \text { and } x_1 = \frac{{y_1}^2}{4}\]

\[So,\]

\[\frac{y_1 - 1}{m} = \frac{{y_1}^2}{4}\]

\[ \Rightarrow \frac{y_1 - 1}{\left( \frac{2}{y_1} \right)} = \frac{{y_1}^2}{4} [\text { From } (1)]\]

\[ \Rightarrow \frac{y_1 \left( y_1 - 1 \right)}{2} = \frac{{y_1}^2}{4}\]

\[ \Rightarrow 2 {y_1}^2 - 2 y_1 = {y_1}^2 \]

\[ \Rightarrow {y_1}^2 - 2 y_1 = 0\]

\[ \Rightarrow {y_1}^2 - 2 y_1 = 0\]

\[ \Rightarrow y_1 \left( y_1 - 2 \right) = 0\]

\[ \Rightarrow y_1 = 0, 2\]

\[\text { So, For } y_1 =0,m = \frac{2}{0} = \infty \]

\[\text { For } y_1 =2,m = \frac{2}{2} = 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.5 | Q 27 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×