Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
उत्तर
\[x = a\left( \theta + \sin\theta \right) \text { and }y = a\left( 1 - \cos\theta \right)\]
\[\frac{dx}{d\theta} = a\left( 1 + \cos\theta \right) \text { and } \frac{dy}{d\theta} = a\sin\theta\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\sin\theta}{a\left( 1 + \cos\theta \right)} = \frac{\sin\theta}{\left( 1 + \cos\theta \right)} = \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} = \tan\frac{\theta}{2} . . . \left( 1 \right)\]
\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_\theta =\tan\frac{\theta}{2}\]
\[\text { Now }, \left( x_1 , y_1 \right) = \left[ a\left( \theta + \sin\theta \right), a\left( 1 - \cos\theta \right) \right] \]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - a\left( 1 - \cos\theta \right) = \tan\frac{\theta}{2}\left[ x - a\left( \theta + \sin\theta \right) \right]\]
\[ \Rightarrow y - a\left( 2 \sin^2 \frac{\theta}{2} \right) = x\tan\frac{\theta}{2} - a\theta\tan\frac{\theta}{2} - a\tan\frac{\theta}{2}\sin\theta\]
\[ \Rightarrow y - a\left( 2 \sin^2 \frac{\theta}{2} \right) = x\tan\frac{\theta}{2} - a\theta\tan\frac{\theta}{2} - a\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}2\sin\frac{\theta}{2}\cos\frac{\theta}{2}........... [From (1)]\]
\[ \Rightarrow y - 2a \sin^2 \frac{\theta}{2} = \left( x - a\theta \right)\tan\frac{\theta}{2} - 2a \sin^2 \frac{\theta}{2}\]
\[ \Rightarrow y = \left( x - a\theta \right)\tan\frac{\theta}{2}\]
\[\text { Equation of normal is },\]
\[y - a\left( 1 - \cos\theta \right) = - \cot\frac{\theta}{2}\left[ x - a\left( \theta + \sin\theta \right) \right]\]
\[ \Rightarrow \tan \frac{\theta}{2}\left[ y - a\left( 2 \sin^2 \frac{\theta}{2} \right) \right] = - x + a\theta + a\sin\theta\]
\[ \Rightarrow \tan \frac{\theta}{2}\left[ y - a\left\{ 2 \left( 1 - \cos^2 \frac{\theta}{2} \right) \right\} \right] = - x + a\theta + a\sin\theta\]
\[ \Rightarrow \tan \frac{\theta}{2}\left( y - 2a \right) + a \left( 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \right) = - x + a\theta + asin\theta\]
\[ \Rightarrow \tan \frac{\theta}{2}\left( y - 2a \right) + a\sin\theta = - x + a\theta + asin\theta\]
\[ \Rightarrow \tan \frac{\theta}{2}\left( y - 2a \right) = - x + a\theta\]
\[ \Rightarrow \tan \frac{\theta}{2}\left( y - 2a \right) + x - a\theta = 0\]
APPEARS IN
संबंधित प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
Which of the following represent the slope of normal?
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.