मराठी

Find the Angle of Intersection of the Following Curve Y = 4 − X2 and Y = X2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?

उत्तर

\[\text { Given curves are},\]

\[y = 4 - x^2 . . . . . \left( 1 \right)\]

\[y = x^2 . . . . . \left( 2 \right)\]

\[\text { From ( 1)and (2), we get }\]

\[4 - x^2 = x^2 \]

\[ \Rightarrow 2 x^2 = 4\]

\[ \Rightarrow x^2 = 2\]

\[ \Rightarrow x = \pm \sqrt{2}\]

\[\text { Substituting the values of x in (2), we get }, \]

\[ \Rightarrow y = 2\]

\[ \Rightarrow \left( x, y \right)=\left( \sqrt{2},2 \right),\left( - \sqrt{2}, 2 \right)\]

\[\text{ Differentiating (1) w.r.t.x, }\]

\[\frac{dy}{dx} = - 2x . . . . . \left( 3 \right)\]

\[\text { Differentiating (2) w.r.t.x },\]

\[\frac{dy}{dx} = 2x . . . . . \left( 4 \right)\]

\[\text { Case } 1:\left( x, y \right)=\left( \sqrt{2}, 2 \right)\]

\[\text { From } \left( 3 \right), \text { we have,} m_1 = - 2\sqrt{2}\]

\[\text { From} \left( 4 \right) \text { we have }, m_2 = 2\sqrt{2}\]

\[\text { Now }, \]

\[\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{- 2\sqrt{2} - 2\sqrt{2}}{1 - 8} \right| = \frac{4\sqrt{2}}{7}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{4\sqrt{2}}{7} \right)\]

\[\text { Case } 1:\left( x, y \right)=\left( -\sqrt{2}, 2 \right)\]

\[\text { From } \left( 3 \right), \text { we have }, m_1 = 2\sqrt{2}\]

\[\text { From } \left( 4 \right) \text { we have }, m_2 = - 2\sqrt{2}\]

\[\text { Now,} \]

\[\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{2\sqrt{2} + 2\sqrt{2}}{1 - 8} \right| = \frac{4\sqrt{2}}{7}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{4\sqrt{2}}{7} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.3 | Q 1.9 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


Let `y = f(x)` be the equation of the curve, then equation of normal is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×