मराठी

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t

उत्तर

 

Given:
x=3 costcos3t

y=3 sintsin3t

Slope of the tangent`dy/dx=(dy/dt)/(dx/dt)=(3cost-3sin^2tcost)/(-3sint+3cos^2tsint)`

`=(3cost[cos^2t])/(-3sint[sin^2t])`

`dy/dx=(-cos^3t)/sin^3t`

Slope of the normal 

`=sin^3t/cos^3 t`

The equation of the normal is given by

`(y-(3sint-sin^3t))/(x-(3cost-cos^3t))=sin^3t/cos^3t`

`=>ycos^3t-3sint cos^3t +sin^3tcos^3t=xsin^3t-3costsin^3t+sin^3tcos^3t`

`=>ycos^3t-xsin^3t=3(sintcos^3t-costsin^3t)`

`=>ycos^3t-xsin^3t=3sintcost(cos^2t-sin^2t)`

`=>ycos^3t-xsin^3t=3/2sin2tcos2t=3/4sin4t`

`=>4(ycos^3t-xsin^3t)=3sin4t`

Hence proved.

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Delhi Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×