मराठी

Find a Point on the Curve Y = X3 − 3x Where the Tangent is Parallel to the Chord Joining (1, −2) and (2, 2) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?

उत्तर

Let (x1, y1) be the required point.

\[\text { Slope of the chord } = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 + 2}{2 - 1} = 4\]

\[y = x^3 - 3x\]

\[ \Rightarrow \frac{dy}{dx} = 3 x^2 - 3 . . . \left( 1 \right)\]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) {{=3x}_1}^2 -3\]

\[\text { It is given that the tangent and the chord are parallel } .\]

\[\therefore \text { Slope of the tangent } = \text { Slope of the chord }\]

\[ \Rightarrow 3 {x_1}^2 - 3 = 4\]

\[ \Rightarrow 3 {x_1}^2 = 7\]

\[ \Rightarrow {x_1}^2 = \frac{7}{3}\]

\[ \Rightarrow x_1 = \pm \sqrt{\frac{7}{3}} = \sqrt{\frac{7}{3}} or - \sqrt{\frac{7}{3}}\]

\[\text { Case }1\]

\[\text { When }x_1 = \sqrt{\frac{7}{3}}\]

\[\text { On substituting this in eq. (1), we get }\]

\[ y_1 = \left( \sqrt{\frac{7}{3}} \right)^3 - 3\left( \sqrt{\frac{7}{3}} \right) = \frac{7}{3}\sqrt{\frac{7}{3}} - 3\sqrt{\frac{7}{3}} = \frac{- 2}{3}\sqrt{\frac{7}{3}} \]

\[ \therefore \left( x_1 , y_1 \right) = \left( \sqrt{\frac{7}{3}}, \frac{- 2}{3}\sqrt{\frac{7}{3}} \right)\]

\[\text { Case }2\]

\[\text { When }x_1 = - \sqrt{\frac{7}{3}}\]

\[\text { On substituting this in eq. (1), we get }\]

\[ y_1 = \left( - \sqrt{\frac{7}{3}} \right)^3 - 3\left( - \sqrt{\frac{7}{3}} \right) = \frac{- 7}{3}\sqrt{\frac{7}{3}} + 3\sqrt{\frac{7}{3}} = \frac{2}{3}\sqrt{\frac{7}{3}} \]

\[ \therefore \left( x_1 , y_1 \right) = \left( - \sqrt{\frac{7}{3}}, \frac{2}{3}\sqrt{\frac{7}{3}} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.1 | Q 4 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


Let `y = f(x)` be the equation of the curve, then equation of normal is


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×