Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
उत्तर
\[4 x^2 + 9 y^2 = 36\]
\[\text { Differentiating both sides w.r.t.x }, \]
\[8x + 18y \frac{dy}{dx} = 0\]
\[ \Rightarrow 18y \frac{dy}{dx} = - 8x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 8x}{18y} = \frac{- 4x}{9y}\]
\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_\left( 3 \cos\theta, 2 \sin\theta \right) =\frac{- 12\cos\theta}{18\sin\theta}=\frac{- 2 \cos\theta}{3 \sin\theta}\]
\[\text { Given} \left( x_1 , y_1 \right) = \left( 3 \cos\theta, 2 \sin\theta \right)\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - 2 \sin\theta = \frac{- 2 \cos\theta}{3 \sin\theta}\left( x - 3 \cos\theta \right)\]
\[ \Rightarrow 3y \sin\theta - 6 \sin^2 \theta = - 2x \cos\theta + 6 \cos^2 \theta\]
\[ \Rightarrow 2x \cos\theta + 3y \sin\theta = 6\left( \cos^2 \theta + \sin^2 \theta \right)\]
\[ \Rightarrow 2x \cos\theta + 3y \sin\theta = 6\]
\[\text { Equation of normal is },\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - 2 \sin\theta = \frac{3 \sin\theta}{2 \cos\theta}\left( x - 3 \cos\theta \right)\]
\[ \Rightarrow 2y \cos\theta - 4 \sin\theta \cos\theta = 3x \sin\theta - 9 \sin\theta \cos\theta\]
\[ \Rightarrow 3x \sin\theta - 2y \cos\theta - 5\sin\theta \cos\theta = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.
Which of the following represent the slope of normal?