English

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ? - Mathematics

Advertisements
Advertisements

Question

Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    

Solution

\[4 x^2 + 9 y^2 = 36\]

\[\text { Differentiating both sides w.r.t.x }, \]

\[8x + 18y \frac{dy}{dx} = 0\]

\[ \Rightarrow 18y \frac{dy}{dx} = - 8x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- 8x}{18y} = \frac{- 4x}{9y}\]

\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_\left( 3 \cos\theta, 2 \sin\theta \right) =\frac{- 12\cos\theta}{18\sin\theta}=\frac{- 2 \cos\theta}{3 \sin\theta}\]

\[\text { Given} \left( x_1 , y_1 \right) = \left( 3 \cos\theta, 2 \sin\theta \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 2 \sin\theta = \frac{- 2 \cos\theta}{3 \sin\theta}\left( x - 3 \cos\theta \right)\]

\[ \Rightarrow 3y \sin\theta - 6 \sin^2 \theta = - 2x \cos\theta + 6 \cos^2 \theta\]

\[ \Rightarrow 2x \cos\theta + 3y \sin\theta = 6\left( \cos^2 \theta + \sin^2 \theta \right)\]

\[ \Rightarrow 2x \cos\theta + 3y \sin\theta = 6\]

\[\text { Equation of normal is },\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 2 \sin\theta = \frac{3 \sin\theta}{2 \cos\theta}\left( x - 3 \cos\theta \right)\]

\[ \Rightarrow 2y \cos\theta - 4 \sin\theta \cos\theta = 3x \sin\theta - 9 \sin\theta \cos\theta\]

\[ \Rightarrow 3x \sin\theta - 2y \cos\theta - 5\sin\theta \cos\theta = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 3.17 | Page 27

RELATED QUESTIONS

 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The curve y = `x^(1/5)` has at (0, 0) ______.


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×