Advertisements
Advertisements
Question
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Solution
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]
\[\text { Differentiating both sides w.r.t.x,} \]
\[\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{2y}{b^2}\frac{dy}{dx} = \frac{2x}{a^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x b^2}{y a^2}\]
\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_\left( \sqrt{2}a,b \right) =\frac{\sqrt{2}a b^2}{b a^2}=\frac{\sqrt{2}b}{a}\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m\left( x - x_1 \right)\]
\[ \Rightarrow y - b = \frac{\sqrt{2}b}{a}\left( x - \sqrt{2}a \right)\]
\[ \Rightarrow ay - ab = \sqrt{2}bx - 2ab\]
\[ \Rightarrow \sqrt{2}bx - ay = ab\]
\[ \Rightarrow \frac{\sqrt{2}x}{a} - \frac{y}{b} = 1\]
\[\text { Equation of normal is, }\]
\[y - y_1 = \frac{- 1}{m}\left( x - x_1 \right)\]
\[ \Rightarrow y - b = \frac{- a}{\sqrt{2}b}\left( x - \sqrt{2}a \right)\]
\[ \Rightarrow \sqrt{2}by - \sqrt{2} b^2 = - ax + \sqrt{2} a^2 \]
\[ \Rightarrow ax + \sqrt{2}by = \sqrt{2} b^2 + \sqrt{2} a^2 \]
\[ \Rightarrow \frac{ax}{\sqrt{2}} + by = a^2 + b^2\]
APPEARS IN
RELATED QUESTIONS
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
The normal to the curve x2 = 4y passing through (1, 2) is _____________ .
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The curve y = `x^(1/5)` has at (0, 0) ______.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Let `y = f(x)` be the equation of the curve, then equation of normal is
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.