Advertisements
Advertisements
Question
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Solution
Let (x1, y1) be the required point.
Given :
\[y^2 = 2 x^3 \]
\[\text { Since }\left( x_1 y_1 \right) \text { lies on a curve }, {y_1}^2 = 2 {x_1}^3 . . . . \left( 1 \right)\]
\[ \Rightarrow 2y\frac{dy}{dx} = 6 x^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{6 x^2}{2y} = \frac{3 x^2}{y}\]
\[\text { Slope of the tangent at}\left( x, y \right)=\frac{3 {x_1}^2}{y_1}\]
\[\text { Slope of the tangent }=3 [\text { Given }]\]
\[ \therefore \frac{3 {x_1}^2}{y_1} = 3 . . . . \left( 2 \right)\]
\[ \Rightarrow y_1 = {x_1}^2 \]
\[\text { On substituting the value of } y_1 \text { in eq. (1), we get }\]
\[ {x_1}^4 = 2 {x_1}^3 \]
\[ \Rightarrow {x_1}^3 \left( x_1 - 2 \right) = 0\]
\[ \Rightarrow x_1 = 0, 2\]
\[\text { Case }1\]
\[\text { When }x_1 = 0, y_1 = x^2 = 0 . \text { Thus, we get the point }\left( 0, 0 \right). \text { But, it does not satisfy eq }. (2).\]
\[\text { So, we can ignore } (0, 0).\]
\[\text { Case }2\]
\[\text { When } x_1 = 2, y_1 = {x_1}^2 = 4 . \text { Thus, we get the point }\left( 2, 4 \right).\]
APPEARS IN
RELATED QUESTIONS
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
Let `y = f(x)` be the equation of the curve, then equation of normal is
Which of the following represent the slope of normal?