Advertisements
Advertisements
Question
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
Options
(3, 0), (−1, 0)
(3, 0), (1, 2)
(−1, 0), (1, 2)
(1, 2), (1, −2)
Solution
(1, 2), (1, −2)
Let (x1, y1) be the required point.
\[\text { Since, the point lie on the curve } . \]
\[\text { Hence }, {x_1}^2 + {y_1}^2 - 2 x_1 - 3 = 0 . . . \left( 1 \right)\]
\[\text { Now }, x^2 + y^2 - 2x - 3 = 0 \]
\[ \Rightarrow 2x + 2y \frac{dy}{dx} - 2 = 0\]
\[ \therefore \frac{dy}{dx} = \frac{2 - 2x}{2y} = \frac{1 - x}{y}\]
\[\text { Now}, \]
\[\text{ Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{1 - x_1}{y_1}\]
\[\text { Slope of the tangent }=0 ...............(\text {Given })\]
\[ \therefore \frac{1 - x_1}{y_1} = 0\]
\[ \Rightarrow 1 - x_1 = 0\]
\[ \Rightarrow x_1 = 1\]
\[\text { From (1), we get }\]
\[ {x_1}^2 + {y_1}^2 - 2 x_1 - 3 = 0\]
\[ \Rightarrow 1 + {y_1}^2 - 2 - 3 = 0\]
\[ \Rightarrow {y_1}^2 - 4 = 0\]
\[ \Rightarrow y_1 = \pm 2\]
\[\text { So, the points are }\left( 1, 2 \right)\text { and }\left( 1, - 2 \right).\]
APPEARS IN
RELATED QUESTIONS
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
Find the angle of intersection of the curves y2 = x and x2 = y.
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.