English

At What Point the Slope of the Tangent to the Curve X2 + Y2 − 2x − 3 = 0 is Zero - Mathematics

Advertisements
Advertisements

Question

At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero

Options

  • (3, 0), (−1, 0)

  • (3, 0), (1, 2)

  • (−1, 0), (1, 2)

  • (1, 2), (1, −2)

MCQ

Solution

(1, 2), (1, −2)

 

Let (x1, y1) be the required point.

\[\text { Since, the point lie on the curve } . \]

\[\text { Hence }, {x_1}^2 + {y_1}^2 - 2 x_1 - 3 = 0 . . . \left( 1 \right)\]

\[\text { Now }, x^2 + y^2 - 2x - 3 = 0 \]

\[ \Rightarrow 2x + 2y \frac{dy}{dx} - 2 = 0\]

\[ \therefore \frac{dy}{dx} = \frac{2 - 2x}{2y} = \frac{1 - x}{y}\]

\[\text { Now}, \]

\[\text{ Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{1 - x_1}{y_1}\]

\[\text { Slope of the tangent }=0 ...............(\text {Given })\]

\[ \therefore \frac{1 - x_1}{y_1} = 0\]

\[ \Rightarrow 1 - x_1 = 0\]

\[ \Rightarrow x_1 = 1\]

\[\text { From (1), we get }\]

\[ {x_1}^2 + {y_1}^2 - 2 x_1 - 3 = 0\]

\[ \Rightarrow 1 + {y_1}^2 - 2 - 3 = 0\]

\[ \Rightarrow {y_1}^2 - 4 = 0\]

\[ \Rightarrow y_1 = \pm 2\]

\[\text { So, the points are }\left( 1, 2 \right)\text { and }\left( 1, - 2 \right).\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.5 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.5 | Q 13 | Page 43

RELATED QUESTIONS

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


Find the angle of intersection of the curves y2 = x and x2 = y.


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×