Advertisements
Advertisements
Question
Find the angle of intersection of the curves y2 = x and x2 = y.
Solution
Solving the given equations
we have y2 = x and x2 = y
⇒ x4 = x or x4 – x = 0
⇒ x(x3 – 1) = 0
⇒ x = 0, x = 1
Therefore, y = 0, y = 1
i.e. points of intersection are (0, 0) and (1, 1)
Further y2 = x
⇒ `2y "dy"/"dx"` = 1
⇒ `"dy"/"dx" = 1/(2y)`
And x2 = y
⇒ `"dy"/'dx"` = 2x.
At (0, 0), the slope of the tangent to the curve y2 = x is parallel to y-axis and the tangent to the curve x2 = y is parallel to x-axis.
⇒ Angle of intersection = `pi/2`
At (1, 1), slope of the tangent to the curve y2 = x is equal to `1/2` and that of x2 = y is 2.
tan θ = `|(2 - 1/2)/(1 + 1)| = 3/4`
⇒ θ = `tan^-1 (3/4)`
APPEARS IN
RELATED QUESTIONS
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
Which of the following represent the slope of normal?
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.