English

The Slope of the Tangent to the Curve X = T2 + 3t – 8, Y = 2t2 – 2t – 5 at the Point (2,– 1) is - Mathematics

Advertisements
Advertisements

Question

The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`

Solution

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.6 [Page 243]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.6 | Q 20 | Page 243

RELATED QUESTIONS

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×