English

The Equation of the Tangent at (2, 3) on the Curve Y2 = Ax3 + B Is Y = 4x − 5. Find the Values Of A And B ? - Mathematics

Advertisements
Advertisements

Question

The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?

Sum

Solution

The slope of the given line y = 4x − 5 is 4

\[y^2 = a x^3 + b . . . \left( 1 \right)\]

\[2y \frac{dy}{dx} = 3a x^2 \]

\[ \Rightarrow \frac{dy}{dx} = \frac{3a x^2}{2y}\]

\[\text { Slope of tangent }= \left( \frac{dy}{dx} \right)_\left( 2, 3 \right) =\frac{12a}{6}=2a\]

\[\text { Given that }\]

\[\text { Slope of tangent = slope of given line }\]

\[2a = 4\]

\[ \Rightarrow a = 2\]

\[\text { Substituting this and }x= 2,y= 3 \text{ in (1), we get }\]

\[9 = 16 + b\]

\[ \Rightarrow b = - 7\]

\[\text { Hence, a}= 2 \text { and }b = - 7\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 8 | Page 28

RELATED QUESTIONS

Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×