English

If the Tangent to the Curve X = a T2, Y = 2 at is Perpendicular to X-axis, Then Its Point of Contact is - Mathematics

Advertisements
Advertisements

Question

If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .

Options

  • (a, a)

  • (0, a)

  • (0, 0)

  • (a, 0)

MCQ

Solution

(0, 0)

 

Let the required point be (x1, y1).

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence, } x_1 = a t^2 \text { and } y_1 = 2\text { at }\]

\[\text { Now }, x = a t^2 \text { and } y = 2\text { at }\]

\[ \Rightarrow \frac{dx}{dt} = 2\text { at  and } \frac{dy}{dt} = 2a\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t} = \frac{2a}{y}\]

\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{2a}{y_1}\]

\[\text { It is given that the tangent is perpendicular to the y-axis. }\]

\[\text { It means that it is parallel to thex-axis }.\]

\[\therefore \text { Slope of the tangent = Slope of the x-axis }\]

\[\frac{2a}{y_1} = 0\]

\[ \Rightarrow a = 0\]

\[\text { Now },\]

\[ x_1 = a t^2 = 0 \text { and } y_1 = 2\text { at }= 0\]

\[ \therefore \left( x_1 , y_1 \right) = \left( 0, 0 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.5 | Q 5 | Page 42

RELATED QUESTIONS

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


The curve y = `x^(1/5)` has at (0, 0) ______.


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×