Advertisements
Advertisements
Question
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
Options
(1/2, 1/4)
(1/4, 1/2)
(4, 2)
(1, 1)
Solution
(1/4, 1/2)
Let the required point be (x1, y1).
The tangent makes an angle of 45o with the x-axis.
∴ Slope of the tangent = tan 45o = 1
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence, } {y_1}^2 = x_1 \]
\[\text { Now,} y^2 = x\]
\[ \Rightarrow 2y\frac{dy}{dx} = 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2y}\]
\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{1}{2 y_1}\]
\[\text { Given }:\]
\[\frac{1}{2 y_1} = 1\]
\[ \Rightarrow 2 y_1 = 1\]
\[ \Rightarrow y_1 = \frac{1}{2}\]
\[\text{ Now,} \]
\[ x_1 = {y_1}^2 = \left( \frac{1}{2} \right)^2 = \frac{1}{4}\]
\[ \therefore \left( x_1 , y_1 \right) = \left( \frac{1}{4}, \frac{1}{2} \right)\]
APPEARS IN
RELATED QUESTIONS
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
The normal to the curve x2 = 4y passing through (1, 2) is _____________ .
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3